一、分析目的:
结合数据集,根据用户行为路径,制作漏斗转化图,分析用户消费行为各结点转化情况,了解业务和用户现状。
二、分析过程:
导入包
import pandas as pd
import numpy as np
import sqlalchemy
import warnings
warnings.filterwarnings('ignore')
1、读取数据
# 读取数据。plat_flow:平台流量表;plat_check:贷款审核表
engine=sqlalchemy.create_engine('mysql+pymysql://frogdata05:Frogdata!1321@localhost:3306/froghd')
sql_flow='select * from plat_flow'
dt_flow=pd.read_sql(sql=sql_flow,con=engine)
sql_check = 'select * from loans_check'
dt_check = pd.read_sql(sql=sql_check, con=engine)
dt_flow.rename(columns={
"date":"日期",
"PV":"PV",
"UV":"UV",
"regist_cnt":"注册数",
"regist_rate":"访客注册率",
"active_cnt":"激活数",
"active_rate":"激活访问率"
},inplace=True)
dt_check.rename(columns={
"ID":"用户ID",
"date":"申请日期",
"new_cus":"是否新用户(1为是,0为否)",
"lending": "是否放贷"
},inplace=True)
dt_flow.head()
dt_check.head()
dt_check.to_csv("check_info.csv")
2、计算每日申请贷款人数、审批贷款人数、放贷率
- 选取子集,将新用户和老用户分开统计每天申请贷款人数和审批放贷人数,然后计算新用户放贷率。
#最后使用merge函数将新用户结果表和老用户结果表拼接。
dt_check_1 = dt_check[dt_check["是否新用户(1为是,0为否)"] == 1]
dt_check_0 = dt_check[dt_check["是否新用户(1为是,0为否)"] == 0]
- 用grouby 和 agg计算放贷率
pt_1 = dt_check_1.groupby('申请日期')['是否放贷'].agg(['sum','count']).reset_index()
pt_1.rename(columns={'count':'新用户申请数','sum':'新用户放贷数'},inplace=True)
pt_1['新用户放贷率']=pt_1["新用户放贷数"] / pt_1["新用户申请数"]
pt_1.head()
思考方法二: 也可以用数据透视计算放贷率
# pt_1 = pd.pivot_table(data=dt_check_1, index=["申请日期"], values=["是否放贷"], aggfunc=[np.sum,'count'])
# pt_1.columns = pt_1.columns.droplevel(0)
# pt_1.columns = ["新用户放贷数","新用户申请数"]
# pt_1["新用户放贷率"] = pt_1["新用户放贷数"] / pt_1["新用户申请数"]
# pt_1 = pt_1.reset_index()
# pt_1.head()
- 对老用户数据透视计算放贷率
pt_0 = dt_check_0.groupby('申请日期')['是否放贷'].agg(['sum','count']).reset_index()
pt_0.rename(columns={'count':'老用户申请数','sum':'老用户放贷数'},inplace=True)
pt_0["老用户放贷率"] = pt_0["老用户放贷数"] / pt_0["老用户申请数"]
pt_0.head()
- 计算复借率
这里需要计算老用户复借率,所以需要知道每天的老用户数目,这里做简单化处理,
这里的老用户定义是:前一天的放款的新用户第二天继续借款就是老用户
对存量老用户我们暂时不考虑,就看前一天贷款的人第二天是否还继续贷款,贷款的就认为是老用户复借
取新用户放贷透视表的前29天数据+4月30日的人(分析5月1日-5月30日的复借率)构成老客户数量,我们看这些客户是否还继续贷款
old=list(pt_1.iloc[0:-1,1])
# # 假设4月30日有24个人
old.insert(0,24)
dt_old=pd.DataFrame({'申请日期':list(pt_1["申请日期"]),'老客户数':old})
pt_0_m=pd.merge(pt_0, dt_old, how='left', on=["申请日期"])
pt_0_m["老客户复借率"] = pt_0_m["老用户申请数"] / pt_0_m["老客户数"]
pt_0_m.head()
3、计算各节点路径转化率并绘图
- pd.merge连接平台流量表,组成一张用户路径总表,计算各节点转化率。
dt = pd.merge(dt_flow,pt_1,how='left',left_on='日期',right_on='申请日期')
dt_1 = pd.merge(dt, pt_0_m, how='left',left_on="日期", right_on="申请日期" )
dt_1.drop(['申请日期_x', '申请日期_y'],axis=1)
dt_1.head()
#计算转化漏斗。 计算汇总数据
# dt_2 = dt_1.drop(['日期'], axis=1)
# #汇总求和
# dt_2.loc['Row_sum'] = dt_2.apply(lambda x: x.sum())
# dt_3 = dt_2[dt_2.index == "Row_sum"][["PV","UV","注册数","激活数","新用户申请数","新用户放贷数"]]
# dt_3_s = pd.DataFrame(dt_3.stack()).reset_index().iloc[:,[1,2]]
# dt_3_s.columns = ["指标","汇总"]
# dt_3_s
from plotly import graph_objects as go
trace = go.Funnel(
y = dt_3_s["指标"],
x = dt_3_s["汇总"],
textinfo = "value+percent initial",
marker=dict(color=["deepskyblue", "lightsalmon", "tan", "teal", "silver", "yellow"]),
connector = {"line": {"color": "royalblue", "dash": "solid", "width": 3}})
data =[trace]
fig = go.Figure(data)
fig.show()