- java 静态变量声明_java静态变量怎么声明?
柚酱
java静态变量声明
展开全部个人的总结1静态变量e69da5e6ba9062616964757a686964616f31333337616564只有一份被类的所有实例共享2静态变量的声明在编译时已经明确了内存的位置3延迟初始化是改变静态变量的值引用Java静态变量的初始化(static块的本质)在网上看到了下面的一段代码:1.publicclassTest{2.static{3._i=20;4.}5.publicst
- python优先队列使用_python 线程队列PriorityQueue(优先队列)(37)
在线程队列Queue/线程队列LifoQueue文章中分别介绍了先进先出队列Queue和先进后出队列LifoQueue,而今天给大家介绍的是最后一种:优先队列PriorityQueue,对队列中的数据按照优先级排序,那么具体怎么用呢?一.队列Queue分类:1.线程队列Queue—FIFO(先进先出队列),即哪个数据先存入,取数据的时候先取哪个数据,同生活中的排队买东西;2.线程队列LifoQue
- android FlutterFragment 引入 Flutter ,dartEntrypoint配置多引擎,使用MethodChannel 双向数据交互通信
androidFlutterFragment引入Flutter,dartEntrypoint配置多引擎,使用MethodChannel双向数据交互通信FlutterFragment是Flutter提供的一个组件,用于在Android原生应用中嵌入Flutter模块作为Fragment使用。FlutterFragment允许开发者将Flutter视图集成到现有的Android应用架构中,作为Frag
- 文娱产业数字化转型的隐秘战场
数据与人工智能律师
人工智能大数据网络区块链云计算
(首席数据官高鹏律师数字经济团队创作,AI辅助)当《黑神话》用虚幻引擎点燃全球玩家热情时,当《长安三万里》以数字资产重构国风美学时,中国文娱产业的数字化革命已悄然进入深水区。这场没有硝烟的战争里,有人手握流量红利高歌猛进,有人却在数据迷局中折戟沉沙。某现象级手游曾因用户协议条款引发千万索赔,某头部影视公司AI生成素材陷入版权漩涡,这些看似偶然的危机背后,藏着文娱产业数字化转型的致命暗礁——数据权属
- 我国在AI、元宇宙、生成式AI赛道的竞争带来的投资机会
数据与人工智能律师
大数据区块链人工智能网络数据库
首席数据官高鹏律师团队编著中国在AI、元宇宙、生成式AI赛道的竞争已进入技术深化与商业落地并行的关键阶段,未来投资机会可围绕以下五大方向展开:一、基础设施与算力支撑1.云计算与混合云服务生成式AI对算力和云服务需求激增,联想集团等布局混合云的企业受益于企业数字化转型需求。IDC预测,到2025年,50%的企业将与生成式AI云提供商建立战略联系,云服务商需优化数据治理和成本控制能力。2.AI芯片与算
- 2025数字经济新政策解码:这五个黄金赛道,正在改写财富分配规则
数据与人工智能律师
人工智能大数据网络算法区块链
首席数据官高鹏律师团队创作,AI辅助一、政策东风下的财富重构:当免税清单变成“造富密码”2025年的春天,数字经济领域的政策“礼包”如同春雷炸响。从跨境电商的“阳光化新政”到智慧农业的“技术普惠”,从汽车零部件的“出海红利”到工业升级的“智能改造”,再到文旅餐饮的“消费重构”,五大行业正在经历一场财富分配的底层变革。这不是普通的政策调整,而是国家战略级的资源再分配——免税+补贴的组合拳,正在为先行
- 从小白到进阶:解锁linux与c语言高级编程知识点嵌入式开发的任督二脉(3)
small_wh1te_coder
c嵌入式linuxc语言汇编c++嵌入式硬件面试
【硬核揭秘】Linux与C高级编程:从入门到精通,你的全栈之路!第五部分:C语言高级编程——结构体、共用体、枚举、内存管理、GDB调试、Makefile全解析嘿,各位C语言的“卷王”们!在前面的旅程中,我们深入探索了Linux的奥秘,从命令行操作到Shell脚本编程,再到网络文件服务,你的Linux技能已经突飞猛进。现在,是时候回到我们的“老本行”——C语言了!你可能已经能够编写各种简单的C程序,
- ElasticSearch中的分片是什么?
java1234_小锋
javaelasticsearch大数据搜索引擎
大家好,我是锋哥。今天分享关于【ElasticSearch中的分片是什么?】面试题。希望对大家有帮助;ElasticSearch中的分片是什么?超硬核AI学习资料,现在永久免费了!在Elasticsearch中,分片(Shard)是将数据拆分成更小的部分,允许在分布式环境中并行处理和存储数据的机制。它是Elasticsearch在水平扩展时用于管理大量数据的关键概念。主要概念:主分片(Primar
- 扒开嵌入式硬件的底裤(上)!从 PCB 到 FPGA/IC 设计,小白到 CTO 的必学秘籍 硬核知识点全揭秘!从c语言入门到mcu与arm架构及外设相关
small_wh1te_coder
嵌入式内核嵌入式开发嵌入式硬件算法c汇编面试驱动开发单片机
【硬核揭秘】嵌入式硬件工程师的“底裤”:从入门到牛逼,你必须知道的一切!第一部分:破冰与认知——嵌入式硬件工程师的“世界观”嘿,各位C语言老铁,以及所有对“让硬件听你话”充满好奇的朋友们!我是你们的老朋友,一个常年“折腾”在代码和电路板之间的码农。今天,咱们要聊一个真正能让你“硬”起来的话题——如何成为一个合格、优秀、牛逼的嵌入式硬件工程师!你可能正坐在电脑前,敲着C语言代码,刷着力扣算法题,心里
- 你以为的 () 只是函数调用?栈的战争:函数调用背后,编译器、链接器、CPU与黑客的四方博弈 解剖CPU、内存与安全交织的底层真相 了解函数调用的暗流:从C括号到CPU指令、栈帧攻防的生死时速
small_wh1te_coder
c++c算法c语言c++c算法面试
作者:smallcodewhite更新:2025.6.4号下午6点13分小引子:在软件这行当里混久了,你会发现一个现象:很多人能用各种高级语言、框架写出复杂的业务,但一遇到诡异的崩溃、性能瓶颈,或者需要和底层硬件打交道时,就抓瞎了。究其原因,是对计算机体系最基础的运行模型理解得不够透。上一篇我们聊了点数据在内存里的存放问题,有兄弟说不够劲,没触及灵魂。说得好。今天,咱们就来干一件有挑战性的事:把C
- ES 地理网格聚合,基于位置模糊搜索(热力图)
简介热力图需要按照一定范围聚合数据。聚合要求字段必须为geo-point类型ES中geo-point类型,包含lat、lon和geohash信息。"coordinate":{"lat":39.90894,"lon":116.82192,"geohash":"wx55435nkj9h","fragment":true}其中geohash字段是经纬度经过二进制变化、合并和Base32编码得到的编码,编
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- Python|Pyppeteer规避反自动化检测方法【最新方案】(33)
写python的鑫哥
Pyppeteer从入门到精通pythonpyppeteerpuppeteer规避反自动化检测反爬虫
前言本文是该专栏的第33篇,结合优质项目案例持续分享Pyppeteer的干货知识,记得关注。相信有些同学在使用Pyppeteer框架进行某个自动化操作的时候,会触发平台的检测机制,让目标平台识别出当前是机器人在操作,而非人为操作,导致让你的程序无法继续进行下一步。对于上述这种情况,你是不是有很大的疑惑呢?别担心,本文笔者专门针对上述问题,来详细介绍在使用Pyppeteer的过程中,出现反自动化机制
- 深度报告:中老年AI陪伴机器人需求分析
MidJourney中文版
AI机器人人工智能机器人
银发经济新赛道:中老年陪伴聊天AI机器人需求价值与发展路径分析1老龄化社会的隐性需求全球人口结构加速老龄化背景下,老年孤独问题日益凸显为公共健康挑战。传统家庭结构变迁导致独居老人比例持续上升,情感支持缺位与社交隔离形成双重压力,而现有社会服务难以满足高频次、个性化的陪伴需求。在此现实困境中,具备自然语言交互能力的AI机器人玩具展现出独特价值——通过技术手段填补情感空缺,成为应对银发群体精神健康问题
- Socket编程——TCP
兰雪簪轩
Linuxtcp/ip网络协议网络
文章目录一、TCP编程基础TCPsocketAPIsocket二、EchoServer对于服务端对于客户端server.hppServer.ccClient.ccCommandExec.hpp一、TCP编程基础TCP协议和UDP协议都属于网络通信协议,TCP协议是面向字节流的,UDP协议是面向数据报,这个特点后面会详谈的。对于现在来说UDP和TCP的区别为:UDP协议不需要连接,即报文一来就立刻进
- 【Unity&AssetBundle】同步加载
大飞pkz
UnityC#unity游戏引擎C#AssetBundleAssetBundle同步加载AB包
加载包的方式包括:LoadFromFile(从文件)、LoadFromMemory(从内存)、LoadFromStream(从流)【异步同理】1.同步加载第一步.从Asset下的只读文件夹下获取AB包,下面是加载包路径为“Asset/StreamingAssets”,“cube”为包名AssetBundleab=AssetBundle.LoadFromFile(Application.stream
- DPDK 网卡驱动
唯独不开心
DPDK开发语言
DPDK里的PMDs负责处理网络数据包与内存之间的数据交互。而接下来提到的UIO和VFIO是两种不同的驱动方式,允许DPDK绕过内核网络栈,直接在用户空间高效地访问硬件设备。这部分内容会围绕使用这两种驱动的PMDs展开,可能会涉及到它们的配置、使用场景、性能特点等方面。新名词IOMMU(Input-OutputMemoryManagementUnit,输入输出内存管理单元)定义:IOMMU(Inp
- 数据资产确权的法律路径:从原始数据到衍生产品的权利归属
首席数据官高鹏律师数字经济团队创作,AI辅助在数字经济时代,数据已成为堪比石油的战略资源。某新能源车企因驾驶数据归属争议损失数十亿,某电商平台用户画像被竞争对手“合法”窃取的案例频发,暴露出数据这座“金山银山”背后隐藏的法律暗礁。当原始数据的采集边界模糊不清,当衍生数据的价值裂变引发权属混战,如何用法律之钥打开数据资产的财富之门?这不仅是技术命题,更是数字时代的法律革命。一、原始数据:数字土壤上的
- rk3128 emmc显示剩余容量为0
站在巨人肩膀上的码农
RK3128rk驱动开发emmc
机器emmc容量显示异常,显示剩余容量为0,这时候做了一个让系统不检测GPP分区部分的操作,此问题才得以解决,如下:system/vold/DirectVolume.cpp@@-33,6+33,8@@#include"VolumeManager.h"#include"ResponseCode.h"#include"cryptfs.h"+#include+#include#definePARTITI
- 【深度学习】神经网络剪枝方法的分类
烟锁池塘柳0
机器学习与深度学习深度学习神经网络剪枝
神经网络剪枝方法的分类摘要随着深度学习模型,特别是大语言模型(LLM)的参数量爆炸式增长,模型的部署和推理成本变得异常高昂。如何在保持模型性能的同时,降低其计算和存储需求,成为了工业界和学术界的核心议题。神经网络剪枝(Pruning)作为模型压缩的关键技术之一,应运而生。本文将解析剪枝技术的不同分类,深入探讨其原理、优缺点。文章目录神经网络剪枝方法的分类摘要1为什么我们需要剪枝?2分类方法一:剪什
- JMH基准测试入门:科学测量Java代码性能的艺术
zhysunny
Java类库java开发语言
目录一、为什么需要JMH?二、快速入门:你的第一个基准测试1.添加JMH依赖2.编写测试类3.运行并查看结果三、JMH核心概念详解1.测试模式(@BenchmarkMode)2.状态管理(@State)3.预热与测量(@Warmup&@Measurement)四、进阶技巧:解决真实问题案例1:HashMap初始容量优化案例2:流(Stream)vs传统循环五、避免JMH测试的常见陷阱1.死代码消除
- 基于条件风险价值CVaR的微网动态定价与调度策略(Matlab代码实现)
Ps.729
matlab开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、CVaR的理论基础及其在微网中的适用性1.CVaR的定义与优势2.微网应用场景适配性二、动态定价与调度模型的联合优化框架1.目标函数设计2.动态定价机制3.不确定性处理方法三、关键算法与求解策略1.随机规划与CVaR集成2.智能优化算法对比四、实证
- 景联文科技完成数千万元Pre-A轮融资,布局公共数据生产运营|36氪首发
景联文科技
人工智能
景联文的目标是,成为地方政府的公共数据生产、运营商,帮助挖掘公共数据的最大价值。36氪获悉,数据服务公司「景联文科技」于近期完成了数千万元Pre-A轮融资,投资方为杭州金投集团旗下基金。据悉,景联文科技本轮融资将用于公共数据生产运营的布局、智能化语料工程平台构建、以及自建垂直领域高质量标注基地,打造“平台+基地+行业”的数据链闭环生态。景联文科技成立于2012年,是一家AI数据服务运营商。据景联文
- 景联文科技完成数千万元Pre-A轮融资,加速公共数据生产运营战略布局
景联文科技
人工智能大数据
2025年5月,景联文科技近期完成数千万元Pre-A轮融资,投资方为杭州金投集团旗下基金,本轮融资将用于布局公共数据生产运营、构建智能化语料工程平台和自建垂域高质量标注基地,形成"平台+基地+行业"的数据链闭环生态。一、聚焦公共数据生产运营国家数据局成立标志着数据治理从“分散监管”向“集中统筹”转型,从顶层设计开始快速推动“数据要素市场化”。2025年5月,国家宣布将加大中央财政资金投入,支持地方
- dnSpy 使用教程
一、dnSpy简介dnSpy是一款功能强大的免费开源.NET反编译工具,支持对.NETFramework、.NETCore和Mono程序进行反编译、调试与修改,能将程序集反编译为C#或IL(中间语言)代码,帮助开发者或安全研究人员深入分析和理解.NET程序的内部逻辑。它为逆向工程工作提供了极大便利,使相关操作更易于理解和执行。与之类似的ILspy也是一款知名的开源.NET反编译软件,下面将对二者进
- Python 图像分类入门
超龄超能程序猿
机器学习python分类开发语言
一、介绍图像分类作为深度学习的基础任务,旨在将输入图像划分到预定义的类别集合中。在实际的业务中,图像分类技术是比较常用的一种技术技能。例如,在安防监控中,可通过图像分类识别异常行为;在智能交通系统中,实现对交通标志和车辆类型的快速识别等。本文将通过安装包已有数据带你逐步了解使用Python进行图像分类的全过程。二、环境搭建在开始图像分类项目前,需要确保Python环境中安装了必要的库。主要包括:T
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- FeignClient客户端调用入门
超龄超能程序猿
javaspring
在分布式微服务架构广泛应用的技术背景下,服务间通信机制的设计与实现已成为系统开发的核心环节。Feign作为一种基于声明式编程范式的HTTP客户端框架,通过标准化的接口定义与注解配置,显著降低了Web服务调用的开发复杂度,有效提升了微服务间的交互效率。在SpringCloud技术栈体系中,Feign客户端功能的实现主要依托于@FeignClient注解,该注解通过整合Spring框架的依赖注入与动态
- 向量运算、矩阵运算、线性变换相关运算
超龄超能程序猿
机器学习矩阵线性代数机器学习
一、向量核心运算1.向量加法与数乘(线性组合基础)定义:加法:若a=(a1,a2,…,an),b=(b1,b2,…,bn),则a+b=(a1+b1,a2+b2,…,an+bn)。数乘:若k为标量,则ka=(ka1,ka2,…,kan)。性质:满足交换律、结合律,构成向量空间的基本运算。应用:向量线性组合(如基向量表示任意向量)、物理中力的合成与分解。2.点积(内积,DotProduct)定义:a⋅
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比