flink处理数据从kafka到另外一个kafka

需求

需求就是将流量数据(json格式)中某个接口数据抽取一下。如:有个identityUri="yiyang/user/getById/13782" , 这里的13782,是个userId,我们需要将其处理成 identityUri="yiyang/user/getById/{}"

关于接口抽取,有两种方式:

  1. 使用正则替换。正则替换不全,而且有风险,可能会被误替换
  2. 如果能拿到swagger的接口列表,我们可以根据前缀树算法来进行匹配替换(推荐)。这种不会被误替换,但是如果增加接口,我们需要更新swagger的接口数据

实际上我们生产中是将二者接口使用的。先使用2,如果没有匹配到,在使用1

这里是演示flink kafka的用法,我们简单使用正则处理

依赖jar包


        1.12.0
        1.8
        2.11
    

    
        
        
            org.apache.flink
            flink-connector-kafka_${scala.binary.version}
            ${flink.version}
        

        
            com.alibaba
            fastjson
            1.2.75
        
        
            org.apache.flink
            flink-streaming-scala_${scala.binary.version}
            1.12.2
        
        
            flink-clients_${scala.binary.version}
            org.apache.flink
            ${flink.version}
        
        
            ch.qos.logback
            logback-classic
            1.2.3
        
    

编写代码

package com.liufei.flink;

import com.alibaba.fastjson.JSONObject;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Properties;

public class ConsumeKafkaTest {

    private static final Logger log = LoggerFactory.getLogger(ConsumeKafkaTest.class);

    public static void main(String[] args) {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // checkpoint
        // env.enableCheckpointing(10 * 1000L);

        Properties prop = new Properties();
        prop.setProperty("bootstrap.servers", "192.168.18.144:9092"); // kafka地址
        prop.setProperty("group.id", "consumer_flink");

        // 消费消息的topic
        String consumeTopic = "yiyang";
        FlinkKafkaConsumer kafkaConsumer = new FlinkKafkaConsumer<>(
                consumeTopic, new SimpleStringSchema(), prop);
        // 从最新的数据开始消费
        // kafkaConsumer.setStartFromLatest();
        kafkaConsumer.setStartFromGroupOffsets();

        // sink的topic
        String produceTopic = "yiyang_sink";
        FlinkKafkaProducer kafkaProducer = new FlinkKafkaProducer<>(
                produceTopic, new SimpleStringSchema(), prop);

        env.addSource(kafkaConsumer)
                .flatMap(new FlatMapFunction() {
                    @Override
                    public void flatMap(String content, Collector collector) throws Exception {
                        log.info("Flink msg: {}", content);
                        JSONObject jsonObject = JSONObject.parseObject(content);
                        jsonObject.put("identityUri", replaceUri(jsonObject.getString("identityUri")));
                        String contentSink = jsonObject.toJSONString();
                        log.info("Flink sink: {}", contentSink);
                        collector.collect(contentSink);
                    }
                })
                .addSink(kafkaProducer)
                .setParallelism(2);

        try {
            env.execute("My Flink Test");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 接口抽取
     * @param identityUri
     * @return
     */
    private static String replaceUri(String identityUri) {
        if (identityUri == null) {
            return null;
        }
        return identityUri.replaceAll("[0-9]+", "{}");
    }
}

注意:kafka消费的方式是: kafkaConsumer.setStartFromGroupOffsets();

  • 从最早位点开始消费
consumer.setStartFromEarliest();
  • 从指定时间点开始消费
consumer.setStartFromTimestamp(1559801580000l);
  • 从最新的数据开始消费
# 如果消费组中之前有没有消费的消息,则不会被消费,会重置offset成最新的值,这种情况会导致消息丢失。一般不用这个,用下面的
consumer.setStartFromLatest();
2022-07-03 18:31:07.029 INFO  PID_IS_UNDEFINED --- [Kafka Fetcher for Source: Custom Source -> Flat Map (8/8)#0] o.a.k.clients.consumer.internals.SubscriptionState - [Consumer clientId=consumer-consumer_flink-15, groupId=consumer_flink] Resetting offset for partition yiyang-0 to offset 22.
2022-07-03 18:31:12.093 INFO  PID_IS_UNDEFINED --- [Kafka Fetcher for Source: Custom Source -> Flat Map (8/8)#0] o.a.k.c.consumer.internals.AbstractCoordinator - [Consumer clientId=consumer-consumer_flink-15, groupId=consumer_flink] Discovered group coordinator 192.168.18.144:9092 (id: 2147483647 rack: null)

看下上面的启动日志,有这样的信息:Resetting offset for partition yiyang-0 to offset 22.

  • 从上次消费位点开始消费
consumer.setStartFromGroupOffsets();

验证

我们另外启动一个程序,发送消息,并消费两个topic中的数据

{"ip":"127.0.0.5","identityUri":"yiyang/user/getById/13782"}

看下 ConsumeKafkaTest 中的日志

2022-07-03 18:58:48.594 INFO  PID_IS_UNDEFINED --- [Legacy Source Thread - Source: Custom Source -> Flat Map (8/8)#0] com.liufei.flink.ConsumeKafkaTest - Flink msg: {"ip":"127.0.0.5","identityUri":"yiyang/user/getById/13782"}
2022-07-03 18:58:48.655 INFO  PID_IS_UNDEFINED --- [Legacy Source Thread - Source: Custom Source -> Flat Map (8/8)#0] com.liufei.flink.ConsumeKafkaTest - Flink sink: {"ip":"127.0.0.5","identityUri":"yiyang/user/getById/{}"}

在看下另外一个服务(消费两个topic数据)的日志:


image.png

说明已经成功的把处理好的消息发送到另外一个topic中了

扩展

关于数据处理,如果只是简单的增加字段,减少字段,正则替换,也可以使用logstash工具

你可能感兴趣的:(flink处理数据从kafka到另外一个kafka)