/** @deprecated */
@Deprecated
public ConsumerRecords<K, V> poll(long timeoutMs) {
return this.poll(this.time.timer(timeoutMs), false);
}
public ConsumerRecords<K, V> poll(Duration timeout) {
return this.poll(this.time.timer(timeout),
private ConsumerRecords<K, V> poll(Timer timer, boolean includeMetadataInTimeout) {
//.......删除干扰理解的代码行
ConsumerRecords var3;
do {
//.......删除干扰理解的代码行
Map<TopicPartition, List<ConsumerRecord<K, V>>> records = this.pollForFetches(timer);
//检查拉取的消息记录是否为空。
if (!records.isEmpty()) {
//检查是否需要发送更多的拉取请求或者是否有未完成的网络请求。
if (this.fetcher.sendFetches() > 0 || this.client.hasPendingRequests()) {
//如果需要发送更多的拉取请求或者有未完成的网络请求,调用 pollNoWakeup 方法来处理这些请求。
this.client.pollNoWakeup();
}
// 调用 onConsume 方法对消费的消息记录进行拦截处理。
ConsumerRecords var4 = this.interceptors.onConsume(new ConsumerRecords(records));
//返回经过拦截处理后的消费者记录。
return var4;
}
//timer.notExpired()如果在入参的提供的时间内,继续循环,直到returen或者超时
} while(timer.notExpired());
var3 = ConsumerRecords.empty();
return var3;
//.......删除干扰理解的代码行
}
private Map<TopicPartition, List<ConsumerRecord<K, V>>> pollForFetches(Timer timer) {
long pollTimeout = Math.min(this.coordinator.timeToNextPoll(timer.currentTimeMs()), timer.remainingMs());
Map<TopicPartition, List<ConsumerRecord<K, V>>> records = this.fetcher.fetchedRecords();
//如果有数据,直接返回
if (!records.isEmpty()) {
return records;
} else {
//如果没有数据,则发出请求,从服务端获取数据,
this.fetcher.sendFetches();
if (!this.cachedSubscriptionHashAllFetchPositions && pollTimeout > this.retryBackoffMs) {
pollTimeout = this.retryBackoffMs;
}
Timer pollTimer = this.time.timer(pollTimeout);
this.client.poll(pollTimer, () -> {
return !this.fetcher.hasCompletedFetches();
});
timer.update(pollTimer.currentTimeMs());
return this.coordinator.rejoinNeededOrPending() ? Collections.emptyMap() : this.fetcher.fetchedRecords();
}
}
fetchedRecords可能不好理解,你可以这样想比较好理解,
1、while循环里,先走的是else语句,从内部队列completedFetches拿出数据给nextInLineRecords赋值,
2、之后第二次走的是循环里的if语句,因为刚被赋值,所以nextInLineRecords不为null,并且还没有提取,所以this.nextInLineRecords.isFetched=false
3、在第二次走的if语句中,执行this.fetchRecords(this.nextInLineRecords, recordsRemaining);后,this.nextInLineRecords.isFetched会被置为true,下次循环又要走else了,nextInLineRecords又重新被队列中的新的值赋值,并且新的this.nextInLineRecords.isFetched=false,下一次循环又可以走if语句了
public Map<TopicPartition, List<ConsumerRecord<K, V>>> fetchedRecords() {
Map<TopicPartition, List<ConsumerRecord<K, V>>> fetched = new HashMap();
//获取一批最大记录数
int recordsRemaining = this.maxPollRecords;
//.......删除干扰理解的代码行
while(recordsRemaining > 0) {
if (this.nextInLineRecords != null && !this.nextInLineRecords.isFetched) {
List<ConsumerRecord<K, V>> records = this.fetchRecords(this.nextInLineRecords, recordsRemaining);
TopicPartition partition = this.nextInLineRecords.partition;
if (!records.isEmpty()) {
List<ConsumerRecord<K, V>> currentRecords = (List)fetched.get(partition);
if (currentRecords == null) {
fetched.put(partition, records);
} else {
List<ConsumerRecord<K, V>> newRecords = new ArrayList(records.size() + currentRecords.size());
newRecords.addAll(currentRecords);
newRecords.addAll(records);
fetched.put(partition, newRecords);
}
//循环第一个结束位置,recordsRemaining减小到0
recordsRemaining -= records.size();
}
} else {
Fetcher.CompletedFetch completedFetch = (Fetcher.CompletedFetch)this.completedFetches.peek();
if (completedFetch == null) {
//循环第二个结束的位置,内部队列没有数据了
break;
}
try {
this.nextInLineRecords = this.parseCompletedFetch(completedFetch);
} catch (Exception var7) {
//循环第三个结束的位置,抛异常
PartitionData partition = completedFetch.partitionData;
if (fetched.isEmpty() && (partition.records == null || partition.records.sizeInBytes() == 0)) {
this.completedFetches.poll();
}
throw var7;
}
this.completedFetches.poll();
}
}
//.......删除干扰理解的代码行
return fetched;
}
private List<ConsumerRecord<K, V>> fetchRecords(Fetcher<K, V>.PartitionRecords partitionRecords, int maxRecords) {
//.......删除干扰理解的代码行
partitionRecords.drain();
return Collections.emptyList();
}
partitionRecords.drain();
会把提取标志设为已提取
private void drain() {
if (!this.isFetched) {
this.maybeCloseRecordStream();
this.cachedRecordException = null;
this.isFetched = true;
this.completedFetch.metricAggregator.record(this.partition, this.bytesRead, this.recordsRead);
if (this.bytesRead > 0) {
Fetcher.this.subscriptions.movePartitionToEnd(this.partition);
}
}
}
public synchronized int sendFetches() {
//返回的是一个map,key是集群的节点,value是要发往这个节点的入参,下面for循环次数=客户端发送请求的次数(一个分区一次请求)=fetchRequestMap.size
Map<Node, FetchRequestData> fetchRequestMap = this.prepareFetchRequests();
final Node fetchTarget;
final FetchRequestData data;
Builder request;
//它遍历一个名为fetchRequestMap的映射(Map)的条目集合。每个条目是一个键值对,其中键是请求的目标(fetchTarget),值是请求对象(request)。
//在每次循环迭代中,代码会执行以下操作:
//获取迭代器(Iterator)对象var2,用于遍历fetchRequestMap的条目集合。
//检查是否还有下一个条目,即检查迭代器是否还有更多的元素。
//如果还有下一个条目,代码将执行this.client.send(fetchTarget, request).addListener(new RequestFutureListener()这一行代码。
//这行代码的作用是将请求对象request发送到指定的目标fetchTarget,并添加一个RequestFutureListener监听器来处理响应。
//请注意,代码中的this.client表示当前对象的客户端属性,send是客户端发送请求的方法,addListener用于添加请求监听器。
for(Iterator var2 = fetchRequestMap.entrySet().iterator(); var2.hasNext(); this.client.send(fetchTarget, request).addListener(new RequestFutureListener<ClientResponse>() {
//监听器在请求成功后的处理逻辑
public void onSuccess(ClientResponse resp) {
synchronized(Fetcher.this) {
FetchResponse<Records> response = (FetchResponse)resp.responseBody();
FetchSessionHandler handler = Fetcher.this.sessionHandler(fetchTarget.id());
if (handler == null) {
Fetcher.this.log.error("Unable to find FetchSessionHandler for node {}. Ignoring fetch response.", fetchTarget.id());
} else if (handler.handleResponse(response)) {
Set<TopicPartition> partitions = new HashSet(response.responseData().keySet());
Fetcher.FetchResponseMetricAggregator metricAggregator = new Fetcher.FetchResponseMetricAggregator(Fetcher.this.sensors, partitions);
Iterator var7 = response.responseData().entrySet().iterator();
//遍历结果集,
while(var7.hasNext()) {
Entry<TopicPartition, PartitionData<Records>> entry = (Entry)var7.next();
TopicPartition partition = (TopicPartition)entry.getKey();
long fetchOffset = ((org.apache.kafka.common.requests.FetchRequest.PartitionData)data.sessionPartitions().get(partition)).fetchOffset;
PartitionData fetchData = (PartitionData)entry.getValue();
Fetcher.this.log.debug("Fetch {} at offset {} for partition {} returned fetch data {}", new Object[]{Fetcher.this.isolationLevel, fetchOffset, partition, fetchData});
//把数据放入到completedFetches 队列中,每一个Fetcher都有分区和数据
Fetcher.this.completedFetches.add(new Fetcher.CompletedFetch(partition, fetchOffset, fetchData, metricAggregator, resp.requestHeader().apiVersion()));
}
Fetcher.this.sensors.fetchLatency.record((double)resp.requestLatencyMs());
}
}
}
//在请求发生异常后的处理方法
public void onFailure(RuntimeException e) {
//.......删除干扰理解的代码行
}
})) {
//这里才是for循环的主体逻辑,上面的onFailure和onSuccess是RequestFutureListener内部实现,
Entry<Node, FetchRequestData> entry = (Entry)var2.next();
fetchTarget = (Node)entry.getKey();
data = (FetchRequestData)entry.getValue();
request = Builder.forConsumer(this.maxWaitMs, this.minBytes, data.toSend()).isolationLevel(this.isolationLevel).setMaxBytes(this.maxBytes).metadata(data.metadata()).toForget(data.toForget());
//.......删除干扰理解的代码行
}
return fetchRequestMap.size();
}
private Map<Node, FetchRequestData> prepareFetchRequests() {
Cluster cluster = this.metadata.fetch();
Map<Node, org.apache.kafka.clients.FetchSessionHandler.Builder> fetchable = new LinkedHashMap();
//var3是此次请求要获取的分区对象的迭代器,迭代器中每一个对象都是TopicPartition1
Iterator var3 = this.fetchablePartitions().iterator();
//遍历
while(var3.hasNext()) {
TopicPartition partition = (TopicPartition)var3.next();
//此partition分区属于集群的哪个节点,后面会当成fetchable的key
Node node = cluster.leaderFor(partition);
//.......删除干扰理解的代码行
//builder=fetchable.get(node);
org.apache.kafka.clients.FetchSessionHandler.Builder builder = (org.apache.kafka.clients.FetchSessionHandler.Builder)fetchable.get(node);
//如果从map中根据node当key,得出的value是null,则创建一个新的build放入map中
if (builder == null) {
FetchSessionHandler handler = this.sessionHandler(node.id());
if (handler == null) {
handler = new FetchSessionHandler(this.logContext, node.id());
this.sessionHandlers.put(node.id(), handler);
}
builder = handler.newBuilder();
fetchable.put(node, builder);
}
long position = this.subscriptions.position(partition);
//把分区和获取分区最大size添加到build
builder.add(partition, new org.apache.kafka.common.requests.FetchRequest.PartitionData(position, -1L, this.fetchSize, Optional.empty()));
this.log.debug("Added {} fetch request for partition {} at offset {} to node {}", new Object[]{this.isolationLevel, partition, position, node});
}
//.......删除干扰理解的代码行
Map<Node, FetchRequestData> reqs = new LinkedHashMap();
Iterator var10 = fetchable.entrySet().iterator();
//遍历fetchable,根据不同的节点key,value是node对应的build,重新得到一个新的map
while(var10.hasNext()) {
Entry<Node, org.apache.kafka.clients.FetchSessionHandler.Builder> entry = (Entry)var10.next();
reqs.put(entry.getKey(), ((org.apache.kafka.clients.FetchSessionHandler.Builder)entry.getValue()).build());
}
//这个map就是实际发送请求,发往服务端的入参的一部分
return reqs;
}
消费者能消费哪些分区拉取数据,
1、当前客户端订阅了哪些分区,就是有权限拉取这些分区的数据
2、缓冲区队列中有积压数据的分区不再此次拉取分区的集合内
//kafka内部队列,从服务端得到的数据会放这里,之后由业务调用poll方法,先从这个队列里取数据,没有则请求
private final ConcurrentLinkedQueue<Fetcher.CompletedFetch> completedFetches;
private List<TopicPartition> fetchablePartitions() {
Set<TopicPartition> exclude = new HashSet();
//获得当前消费者客户端可以消息哪些分区的集合
List<TopicPartition> fetchable = this.subscriptions.fetchablePartitions();
if (this.nextInLineRecords != null && !this.nextInLineRecords.isFetched) {
exclude.add(this.nextInLineRecords.partition);
}
//查看缓冲区队列还有哪些分区挤压着,从这些分区获取数据排除在这次请求
Iterator var3 = this.completedFetches.iterator();
while(var3.hasNext()) {
Fetcher.CompletedFetch completedFetch = (Fetcher.CompletedFetch)var3.next();
exclude.add(completedFetch.partition);
}
fetchable.removeAll(exclude);
return fetchable;
}