The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
How many circular primes are there below one million?
题目大意:
我们称197为一个循环质数,因为它的所有轮转形式: 197, 971和719都是质数。
100以下有13个这样的质数: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 和97.
100万以下有多少个循环质数?
//(Problem 35)Circular primes // Completed on Fri, 26 Jul 2013, 06:17 // Language: C // // 版权所有(C)acutus (mail: [email protected]) // 博客地址:http://www.cnblogs.com/acutus/ #include<stdio.h> #include<math.h> #include<string.h> #include<ctype.h> #include<stdlib.h> #include<stdbool.h> bool isprim(int n) { int i=2; for(; i*i<n; i++) { if(n%i==0) return false; } return true; } bool circular_prime(int n) { int i,j,flag=1; char s[6]; int sum=0; sprintf(s,"%d",n); int len=strlen(s); for(i=0; i<len; i++) { if(s[i]!='1' && s[i]!='3' && s[i]!='7' && s[i]!='9') return false; } for(i=0; i<len; i++) { for(j=i; j<i+len-1; j++) { sum+=s[j%len]-'0'; sum*=10; } sum+=s[j%len]-'0'; if(!isprim(sum)) return false; sum=0; } return true; } int main() { int sum=4; //已包含2,3,5,7 for(int i=11; i<1000000; i++) { if(circular_prime(i)) sum++; } printf("%d\n",sum); return 0; }
Answer:
|
55 |