import requests
# 假设的多参数公共函数
def exists(val, url, question, methods):
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'zh-CN,zh;q=0.9',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36',
}
res = requests.get(url, headers=headers).content.decode('utf-8', 'ignore')
if methods == "答":
if val in res:
return "存活"
return "死亡"
else:
if question in res:
return "存活"
return "死亡"
pandas支持读取多种数据类型,常见的有excel(xls),csv,sql等具体查看源代码
# pandas读取csv为DataFrame
info = pd.read_csv('test.csv')
# pandas读取xls为DataFrame
infos = pd.read_excel("mt.xls")
datas = pd.DataFrame(infos)
datas
// 自定义函数处理多参数函数
dicts = list(datas.to_dict(orient="inedex").values())
alive = []
for dic in dicts:
acount, url, question, methods = dic["账号id"], dic["链接"], dic["问题标题"], dic["备注(问or答)"]
dic["是否存活"] = exists(acount, url, question, methods)
print(dic)
alive.append(dic)
# 将列表嵌套字典形式数据转化成DataFrame
# DataFrame可以展示表格化数据,处理数据和储存数据
result = pd.DataFrame(alive)
datas.drop(["是否被收录"], axis=1, inplace=True)
datas["状态"] = datas["状态"].map({0: "seccsess", 1: "fail"})
DataFrame包含多种转化方法包括:to_json, to_html, to_dict, to_pdf, to_csv, to_excel等函数
to_dict默认转化为以列为列表的字典,加上orient='index’后会转化成以行为字典的列表
datas=list(data.to_dict(orient='index').values())
datas = datas.replace({None: ''})
8.DataFrame值转可点击链接
import pandas as pd
from IPython.display import display, HTML
# 创建示例 DataFrame
data = pd.DataFrame({'Name': ['John', 'Amy', 'Peter'],
'Website': ['https://www.example.com', 'https://www.google.com', 'https://www.openai.com']})
# 创建超链接的 HTML 标签
data['Website'] = data['Website'].apply(lambda x: f'{x}" target="_blank">{x}')
# 在 Jupyter Notebook 中显示 DataFrame
display(HTML(data.to_html(escape=False)))
持续更新。。。