基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真

目录

1.算法理论概述

2.部分核心程序

3.算法运行软件版本

4.算法运行效果图预览

5.算法完整程序工程


1.算法理论概述

        MNIST手写数字数据库是机器学习中常用的数据集,包含了0到9这10个数字的手写图片。本文介绍一种基于AutoEncoder自编码器的MNIST手写数字识别算法,通过训练自编码器对MNIST数据集进行特征提取和降维,对提取的特征进行分类识别。该算法在MNIST数据集上表现良好,并且具有较高的识别准确率。
该算法的主要步骤如下:

第一步:数据预处理
       从MNIST数据库中加载手写数字图片,对图片进行预处理,将像素值缩放到[0, 1]范围内,以便于神经网络的训练。

第二步:构建AutoEncoder自编码器
       自编码器是一种无监督学习的神经网络,用于将输入数据经过编码和解码过程后,重构与原始输入相似的输出。在该算法中,构建一个多层的自编码器网络,包括输入层、编码层和解码层。编码层的神经元数量较少,从而实现对输入数据的降维。具体步骤如下:

a) 输入层:将MNIST手写数字图片展平为一个一维向量,作为自编码器的输入。
b) 编码层:选择适当的神经元数量,将输入特征进行编码,得到编码后的特征向量。
c) 解码层:通过反向传播算法优化网络参数,实现对编码特征的解码,得到重构后的输出。
d) 损失函数:定义一个适当的损失函数,衡量重构输出与原始输入之间的差异,通过最小化损失函数优化网络参数。
自编码器的前向传播过程

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第1张图片

自编码器的损失函数,重构误差损失函数: 

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第2张图片

       基于AutoEncoder自编码器的MNIST手写数字数据库识别算法是一种有效的图像分类算法。通过自编码器进行特征提取和降维,可以得到较低维度的特征表示,可以在MNIST数据集上取得较高的识别准确率。该算法也可以扩展到其他图像识别任务中,具有较好的通用性和适用性。在实际应用中,可以根据具体情况对自编码器和SVM进行参数调优,进一步提高识别性能和效率。 

2.部分核心程序

.....................................................

%训练第一个自动编码器(Autoencoder)
hiddenSize1 = 100;
autoenc1    = trainAutoencoder(xTrainImages,hiddenSize1,'MaxEpochs',500,'L2WeightRegularization',0.004,'SparsityRegularization',4,'SparsityProportion',0.15,'ScaleData',false);
figure
plotWeights(autoenc1);
 
view(autoenc1)

%获取第一个自动编码器的特征
feat1 = encode(autoenc1,xTrainImages);
view(softnet)

% 将自动编码器和softmax分类层堆叠成深度神经网络(Deep Neural Network,DNN)
deepnet = stack(autoenc1,autoenc2,softnet);
 
view(deepnet)


%进行识别
tmp2s = imgs(:,:,1);
y = deepnet(tmp2s(:));
y
[V,I] = max(y);
disp('识别结果为:');
I
0025

3.算法运行软件版本

MATLAB2022a

4.算法运行效果图预览

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第3张图片

 基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第4张图片

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第5张图片 

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第6张图片 

基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真_第7张图片 

5.算法完整程序工程

OOOOO

OOO

O

你可能感兴趣的:(MATLAB算法开发,#,深度学习,matlab,AutoEncoder,自编码器,MNIST,手写数字识别)