MongoDB Map Reduce 聚合

MongoDB Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。


MapReduce 命令

以下是MapReduce的基本语法:

>db.collection.mapReduce(
   function() {emit(key,value);},  //map 函数
   function(key,values) {return reduceFunction},   //reduce 函数
   {
      out: collection,
      query: document,
      sort: document,
      limit: number
   }
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

使用 MapReduce

考虑以下文档结构存储用户的文章,文档存储了用户的 user_name 和文章的 status 字段:

>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "mark",
   "status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "mark",
   "status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "mark",
   "status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "mark",
   "status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "mark",
   "status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "runoob",
   "status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "runoob",
   "status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
   "post_text": "菜鸟教程,最全的技术文档。",
   "user_name": "runoob",
   "status":"active"
})
WriteResult({ "nInserted" : 1 })

现在,我们将在 posts 集合中使用 mapReduce 函数来选取已发布的文章(status:“active”),并通过user_name分组,计算每个用户的文章数:

>db.posts.mapReduce( 
   function() { emit(this.user_name,1); }, 
   function(key, values) {return Array.sum(values)}, 
      {  
         query:{status:"active"},  
         out:"post_total" 
      }
)

以上 mapReduce 输出结果为:

{
        "result" : "post_total",
        "timeMillis" : 23,
        "counts" : {
                "input" : 5,
                "emit" : 5,
                "reduce" : 1,
                "output" : 2
        },
        "ok" : 1
}

结果表明,共有4个符合查询条件(status:“active”)的文档, 在map函数中生成了4个键值对文档,最后使用reduce函数将相同的键值分为两组。

具体参数说明:

  • result:储存结果的collection的名字,这是个临时集合,MapReduce的连接关闭后自动就被删除了。
  • timeMillis:执行花费的时间,毫秒为单位
  • input:满足条件被发送到map函数的文档个数
  • emit:在map函数中emit被调用的次数,也就是所有集合中的数据总量
  • ouput:结果集合中的文档个数**(count对调试非常有帮助)**
  • ok:是否成功,成功为1
  • err:如果失败,这里可以有失败原因,不过从经验上来看,原因比较模糊,作用不大

使用 find 操作符来查看 mapReduce 的查询结果:

>db.posts.mapReduce( 
   function() { emit(this.user_name,1); }, 
   function(key, values) {return Array.sum(values)}, 
      {  
         query:{status:"active"},  
         out:"post_total" 
      }
).find()

以上查询显示如下结果,两个用户 tom 和 mark 有两个发布的文章:

{ "_id" : "mark", "value" : 4 }
{ "_id" : "runoob", "value" : 1 }

用类似的方式,MapReduce可以被用来构建大型复杂的聚合查询。

Map函数和Reduce函数可以使用 JavaScript 来实现,使得MapReduce的使用非常灵活和强大。

MongoDB 聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。


aggregate() 方法

MongoDB中聚合的方法使用aggregate()。

语法

aggregate() 方法的基本语法格式如下所示:

  >db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)  

实例

集合中的数据如下:

{     	_id: ObjectId(7df78ad8902c)    	title: 'MongoDB Overview',      	description: 'MongoDB is no sql database',   	by_user: 'w3cschool.cc',   	url: 'http://www.w3cschool.cc',  	tags: ['mongodb', 'database', 'NoSQL'],  	likes: 100  }, {  	_id: ObjectId(7df78ad8902d)     	title: 'NoSQL Overview',    	description: 'No sql database is very fast',    	by_user: 'w3cschool.cc',   	url: 'http://www.w3cschool.cc',   	tags: ['mongodb', 'database', 'NoSQL'],   	likes: 10  },  { 	_id: ObjectId(7df78ad8902e)    	title: 'Neo4j Overview',  	description: 'Neo4j is no sql database',   	by_user: 'Neo4j',   	url: 'http://www.neo4j.com',  	tags: ['neo4j', 'database', 'NoSQL'],  	likes: 750  }, 

现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算结果如下:

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}]) {    	"result" : [      		{          			"_id" : "w3cschool.cc",       			"num_tutorial" : 2     		},       		{         			"_id" : "Neo4j",       			"num_tutorial" : 1     		}     	],    	"ok" : 1 }  >  

以上实例类似sql语句: select by_user, count(*) from mycol group by by_user

在上面的例子中,我们通过字段by_user字段对数据进行分组,并计算by_user字段相同值的总和。

下表展示了一些聚合的表达式:

表达式 描述 实例
$sum 计算总和。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { s u m : " sum : " sum:"likes"}}}])
$avg 计算平均值 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { a v g : " avg : " avg:"likes"}}}])
$min 获取集合中所有文档对应值得最小值。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { m i n : " min : " min:"likes"}}}])
$max 获取集合中所有文档对应值得最大值。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", num_tutorial : { m a x : " max : " max:"likes"}}}])
$push 在结果文档中插入值到一个数组中。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", url : { p u s h : " push: " push:"url"}}}])
$addToSet 在结果文档中插入值到一个数组中,但不创建副本。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", url : { a d d T o S e t : " addToSet : " addToSet:"url"}}}])
$first 根据资源文档的排序获取第一个文档数据。 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", first_url : { f i r s t : " first : " first:"url"}}}])
$last 根据资源文档的排序获取最后一个文档数据 db.mycol.aggregate([{KaTeX parse error: Expected '}', got 'EOF' at end of input: …roup : {_id : "by_user", last_url : { l a s t : " last : " last:"url"}}}])

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。

这里我们介绍一下聚合框架中常用的几个操作:

  • $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
  • m a t c h : 用 于 过 滤 数 据 , 只 输 出 符 合 条 件 的 文 档 。 match:用于过滤数据,只输出符合条件的文档。 matchmatch使用MongoDB的标准查询操作。
  • $limit:用来限制MongoDB聚合管道返回的文档数。
  • $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
  • $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
  • $group:将集合中的文档分组,可用于统计结果。
  • $sort:将输入文档排序后输出。
  • $geoNear:输出接近某一地理位置的有序文档。

管道操作符实例

1、$project实例

db.article.aggregate(     	{		$project : {         			title : 1 ,      			author : 1 ,   		}	}); 

这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

db.article.aggregate(    	{ 		$project : { 			_id : 0 ,       			title : 1 ,   			author : 1     		}	}); 

2.$match实例

db.articles.aggregate( [   	{ $match : { score : { $gt : 70, $lte : 90 } } },  	{ $group: { _id: null, count: { $sum: 1 } } }                  	] );  

m a t c h 用 于 获 取 分 数 大 于 70 小 于 或 等 于 90 记 录 , 然 后 将 符 合 条 件 的 记 录 送 到 下 一 阶 段 match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段 match7090group管道操作符进行处理。

3.$skip实例

db.article.aggregate(      	{ $skip : 5 });   

经过$skip管道操作符处理后,前五个文档被"过滤"掉。

你可能感兴趣的:(mongodb,mongodb,mapreduce,数据库)