Spring Boot集成kafka实战

Spring Boot集成kafka实战_第1张图片

1、先解决依赖

springboot相关的依赖我们就不提了,和kafka相关的只依赖一个spring-kafka集成包


 org.springframework.kafka
 spring-kafka
 1.1.1.RELEASE
 

这里我们先把配置文件展示一下

#============== kafka ===================
kafka.consumer.zookeeper.connect=10.93.21.21:2181
kafka.consumer.servers=10.93.21.21:9092
kafka.consumer.enable.auto.commit=true
kafka.consumer.session.timeout=6000
kafka.consumer.auto.commit.interval=100
kafka.consumer.auto.offset.reset=latest
kafka.consumer.topic=test
kafka.consumer.group.id=test
kafka.consumer.concurrency=10
kafka.producer.servers=10.93.21.21:9092
kafka.producer.retries=0
kafka.producer.batch.size=4096
kafka.producer.linger=1
kafka.producer.buffer.memory=40960

2、Configuration:Kafka producer

1)通过@Configuration、@EnableKafka,声明Config并且打开KafkaTemplate能力。

2)通过@Value注入application.properties配置文件中的kafka配置。

3)生成bean,@Bean

package com.kangaroo.sentinel.collect.configuration;
import java.util.HashMap;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
@Configuration
@EnableKafka
public class KafkaProducerConfig {
 @Value("${kafka.producer.servers}")
 private String servers;
 @Value("${kafka.producer.retries}")
 private int retries;
 @Value("${kafka.producer.batch.size}")
 private int batchSize;
 @Value("${kafka.producer.linger}")
 private int linger;
 @Value("${kafka.producer.buffer.memory}")
 private int bufferMemory;
 public Map producerConfigs() {
 Map props = new HashMap<>();
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
 props.put(ProducerConfig.RETRIES_CONFIG, retries);
 props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
 props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
 props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
 return props;
 }
 public ProducerFactory producerFactory() {
 return new DefaultKafkaProducerFactory<>(producerConfigs());
 }
 @Bean
 public KafkaTemplate kafkaTemplate() {
 return new KafkaTemplate(producerFactory());
 }
}

实验我们的producer,写一个Controller。想topic=test,key=key,发送消息message

package com.kangaroo.sentinel.collect.controller;
import com.kangaroo.sentinel.common.response.Response;
import com.kangaroo.sentinel.common.response.ResultCode;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@RestController
@RequestMapping("/kafka")
public class CollectController {
 protected final Logger logger = LoggerFactory.getLogger(this.getClass());
 @Autowired
 private KafkaTemplate kafkaTemplate;
 @RequestMapping(value = "/send", method = RequestMethod.GET)
 public Response sendKafka(HttpServletRequest request, HttpServletResponse response) {
 try {
 String message = request.getParameter("message");
 logger.info("kafka的消息={}", message);
 kafkaTemplate.send("test", "key", message);
 logger.info("发送kafka成功.");
 return new Response(ResultCode.SUCCESS, "发送kafka成功", null);
 } catch (Exception e) {
 logger.error("发送kafka失败", e);
 return new Response(ResultCode.EXCEPTION, "发送kafka失败", null);
 }
 }
}

3、configuration:kafka consumer

1)通过@Configuration、@EnableKafka,声明Config并且打开KafkaTemplate能力。

2)通过@Value注入application.properties配置文件中的kafka配置。

3)生成bean,@Bean

package com.kangaroo.sentinel.collect.configuration;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import java.util.HashMap;
import java.util.Map;
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
 @Value("${kafka.consumer.servers}")
 private String servers;
 @Value("${kafka.consumer.enable.auto.commit}")
 private boolean enableAutoCommit;
 @Value("${kafka.consumer.session.timeout}")
 private String sessionTimeout;
 @Value("${kafka.consumer.auto.commit.interval}")
 private String autoCommitInterval;
 @Value("${kafka.consumer.group.id}")
 private String groupId;
 @Value("${kafka.consumer.auto.offset.reset}")
 private String autoOffsetReset;
 @Value("${kafka.consumer.concurrency}")
 private int concurrency;
 @Bean
 public KafkaListenerContainerFactory> kafkaListenerContainerFactory() {
 ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>();
 factory.setConsumerFactory(consumerFactory());
 factory.setConcurrency(concurrency);
 factory.getContainerProperties().setPollTimeout(1500);
 return factory;
 }
 public ConsumerFactory consumerFactory() {
 return new DefaultKafkaConsumerFactory<>(consumerConfigs());
 }
 public Map consumerConfigs() {
 Map propsMap = new HashMap<>();
 propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
 propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
 propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
 propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
 propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
 propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
 propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
 propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
 return propsMap;
 }
 @Bean
 public Listener listener() {
 return new Listener();
 }
}

new Listener()生成一个bean用来处理从kafka读取的数据。Listener简单的实现demo如下:只是简单的读取并打印key和message值

@KafkaListener中topics属性用于指定kafka topic名称,topic名称由消息生产者指定,也就是由kafkaTemplate在发送消息时指定。

package com.kangaroo.sentinel.collect.configuration;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
public class Listener {
 protected final Logger logger = LoggerFactory.getLogger(this.getClass());
 @KafkaListener(topics = {"test"})
 public void listen(ConsumerRecord record) {
 logger.info("kafka的key: " + record.key());
 logger.info("kafka的value: " + record.value().toString());
 }
}

你可能感兴趣的:(编程,Java,程序员,kafka,java,spring,boot)