HTTPS全称为 Hyper Text Tranfer Protocol over SecureSocket Layer。HTTPS协议也是一个应用层协议,是在HTTP协议的基础上引入了一个加密层。
在传统的HTTP协议中,数据以明文的形式在网络上传输,这意味着敏感信息(如密码、个人信息等)可能会在传输过程中被攻击者截获和窃取。为了解决这个安全问题,HTTPS通过使用安全套接字层(SSL,Secure Sockets Layer)或传输层安全(TSL,Transport Layer Security)协议对HTTP进行加密,从而在数据传输过程中提供加密和认证保护。
HTTP和HTTPS只是在技术上有交集,实际上它们是两种不同的协议。一般来说,HTTP协议使用的端口号是80,HTTPS协议使用的端口号是443。
认识相关术语
比如在下面这样的一个过程中:
a的值就可以称之为明文, key数据就可以称之为密钥。将a与key进行异或的过程,可以称之为加密,而异或得到的b,就可以称之为密文。我们知道,如果b此时再与key进行异或,那么会得到a的值,也就是会得到明文的内容,这也就是解密的过程。
当然,实际我们使用的加密方法要比这复杂的多,但是我们可以通过这个例子来大致理解加密解密的过程是怎样的。
就好比两个人传纸条,纸条需要经过中间人。如果不对数据进行加密,那么中间人也可以打开纸条看到数据了,甚至对数据进行篡改。我们对数据进行加密,本质上就是防止有个中间人看到或者修改我们的数据内容。
试想一下这样的场景,你给喜欢的女生写情书,中间让另一个人帮忙传递。但是他居然打开情书偷偷看里面的内容了,更损的事是他把名字给修改了!从这我相信你也知道了给数据加密的重要性了。
以臭名昭著的运营商劫持事件为例
我们知道,不管是公司、学校亦或是家庭网络,都是由运营商提供服务的,我们发送消息,或者是接收消息,中间都是要经过运营商的。
我们本来想要下载一款软件,原本在点击下载按钮之后,会弹出这款软件的下载链接,但是被数据包被劫持之后,就可能会弹出另一款软件的下载链接。
由于我们通过网站传输的任何数据报都会经过运营商的网络设备(路由器、交换机等),那么运营商的网络设备就可以解析出你传输的数据内容,并进行篡改。
点击“下载按钮”,其实就是给服务器发送了一个HTTP请求,获取到的HTTP响应其实就包含了该APP的下载链接,但是运营商劫持之后,发现这个请求是要下载一款软件,那么就自动将交给用户的响应篡改成另一款软件的下载地址了。
运营商为什么要做这样的事?
使用HTTPS不只是因为这一个事件,这里只是进行一个举例。还有更重要的原因,比如保护用户隐私,防止数据被篡改,确保网站的真实性等等。 试想一下,如果黑客在用户登录支付宝的时候获取到用户的账号密码,甚至获取到用户的支付密码,后果会有多么严重…
对称加密其实就是通过同一个密钥,可以把明文加密成密文,并且也能将密文加密成明文。
上面我所举的按位异或的例子用的就是简单的对称加密的方法。当前,按位异或只是最简单的对称加密,HTTPS中肯定用的不是按位异或。
单纯使用对称加密的方法可行吗?
首先,如果能做到客户端和服务端都拥有这个密钥且没有第三者做到,那理论上对称加密是可以的,但是如果才能做到这个密钥不如其他人知道呢?
无论是这个密钥是客户端生成发送给服务端,还是服务端生成发送给客户端,此时如果有中间人窃取了该密钥的信息,那往后所谓的“加密”数据,中间人都可以将其解密,获取数据后再加密,这样就拿到数据了。
因此密钥的传输也必须进行加密传输!
但是如果想对密钥进行对称加密,就仍然需要先协商确定一个“密钥的密钥”,这就形成了“先有鸡还是先有蛋”的问题了,此时密钥的传输再用对称加密就行不通了。
所以单纯地使用对称加密是行不通的,我们还需要引非对称加密。
非对称加密要用到两个密钥,一个叫做公钥,一个叫做私钥。公钥和私钥是配对的,最大的缺点就是运算速度非常慢,比对称加密要慢很多。
过程如下:
也可以反着用
非对称加密的数学原理比较复杂,涉及到一些数论相关的知识。这里举一个生活上的例子:
比如A给一个文件上锁,只有B有解锁的钥匙。这个场景中,锁就相当于公钥,钥匙就是私钥,私钥只有B才拥有,也就是说,只有B才能进行解密。
那么非对称加密可以防范中间人攻击吗?
鉴于非对称加密的机制,我们可能会有这种思路:服务器先把公钥以明文方式传输给浏览器,之后浏览器向服务传数据前都先用这个公钥加密好再传,这样数据的安全似乎就可以保障了,因为只有服务器有相应的私钥能解开公钥加密的数据。
然而反过来由服务器到浏览器的这条路怎么保障安全?如果服务器用它的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始通过明文传输给浏览器的,若这个公钥中间被人劫持到了,那它也能用该公钥解密服务器传来的信息了。所以目前只能保证由浏览器向服务器传输数据的安全性。
所以,一组公钥私钥,至少可以确保单向的数据安全,那么我们可不可以合理推断如果我有两组公钥私有,那我就可以保证双向数据传输的安全了呢?
这样似乎就成功了,但是非对称加密方法非常耗时,这样的方法在实际中其实我们并没有去用。
有没有一种方法,可以让客户端和服务端都使用私密的密钥进程对称加密呢?
由于对称加密的效率比非对称加密高很多,因此只是在开始阶段协商密钥的时候使用非对称加密,后续的传输仍然使用对称加密。
这样就解决了通信时数据的安全问题了吗?进度条告诉你,事情没这么简单!
如果从一开始,服务端在传输公钥S的时候,中间人将该公钥S换成了其他的公钥呢?
为了解决问题,下面引入CA证书。
HTTPS协议不是想用就能用的,服务端在使用HTTPS之前,需要向CA机构申领一份数字证书,数字证书里包含了证书的申请者信息,公钥信息等。服务器把证书传输给浏览器,浏览器从证书里获取公钥就可以了。
证书就好比身份证,证明服务端公钥的权威性。
当客户端第一次向服务端发起请求的时候,其实服务端返回的不仅仅是公钥,而是CA证书,证书内包含了公钥和其他信息。
CA认证是什么?
CA认证,即电子认证服务 ,是指为电子签名相关各方提供真实性、可靠性验证的活动。
证书颁发机构(CA, Certificate Authority)即颁发数字证书的机构。是负责发放和管理数字证书的权威机构,并作为电子商务交易中受信任的第三方,承担公钥体系中公钥的合法性检验的责任。
证书含有的重要信息有:
服务器发来的公钥的合法性,是要通过证书来进行甄别的。问题是,证书怎么做到的呢?或者说,我们如何保证证书的合法性?
引入数字签名
数据签名和形成是基于非对称加密算法的。
我们申请证书的时候,只是将图中的明文信息给了CA机构。
CA机构会将这些数据进行哈希散列,得到一个哈希值。然后,CA机构会用它自己的私钥对这个哈希值进行加密,形成一个数据签名。将数据和数据签名合在一起,就变成了带有数据签名的数据了。
那么这个签名该怎么使用呢?客户端拿到服务端的CA整数之后,会将数据和数据签名分开。将数据进行哈希散列形成一个哈希值。再将数据签名使用CA机构的公钥进行解密,也得到一个哈希值。将这两个哈希值进行比较,如果相同,则说明证书是正确的。
两个概念的解释:
所以在客户端和服务器刚开始建立连接的时候,服务端会给客户端返回一个证书,证书包含了之前服务器的公钥,也包含了网站的身份信息。
服务器申请CA证书
当服务器申请CA证书的时候,CA机构会对该服务器进行审核,并专门为该网站形成数据签名,过程如下:
服务端申请的证书明文和数字签名S共同组成了数字证书,这样一份数字证书就可以颁发给服务器了。
客户端进行认证
当客户端获取到这个证书之后,会对证书进行校验(防止证书是伪造的)
中间人有没有可能篡改该证书?
如果中间人篡改了证书的明文,那他没有CA机构的私钥,也就没法生成对应的数据签名,那么他的篡改结果就不符合CA证书的规定了。如果强行篡改,也就是说用自己的私钥去加密数据摘要得到数据签名,那么这样客户端收到证书之后会发现明文和前面解密后的值不一致,则说明证书已被篡改,证书不可信,从而终止向服务器传输信息,防止信息泄漏给中间人。
那中间人要是整个掉包证书呢?
HTTPS工作过程中涉及到的密钥有三组
第一组(非对称加密):用于校验证书是否被篡改,服务器持有私钥(在申请证书时获得),客户端持有公钥(操作系统中包含了可信任的CA机构有哪些,同时包含了对应的公钥)。服务器在客户端请求时,返回携带签名的证书,客户端通过公钥对证书进行验证,保证证书的合法性,进而保证证书中携带的服务端公钥的权威性。
第二组(非对称加密):用于协商生成对称加密的密钥,客户端收到CA证书中的公钥给随机生成的对称加密的密钥进行加密,服务器通过私钥解密获取到对称加密的密钥。
第三组(对称加密) :客户端和服务器后续传输的数据都通过这个对称密钥加密解密。
其实一切的关键都是围绕这个对称加密的密钥,其他的机制都是辅助这个密钥工作的。