链接:力扣
描述:给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
思路如下:整体思路是不变的。
这次是两个字符串可以相互删了,动态规划五部曲,分析如下:
1、确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,需要删除元素的最少次数。
2、确定递推公式
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
取最小值即可,当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
3、dp数组如何初始化
递推公式中,dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
dp[0][j]的话同理,所以代码如下:
vector> dp(word1.size() + 1, vector(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
4、确定遍历顺序
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
5、举例推导dp数组
以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:
代码如下:
class Solution {
public:
int minDistance(string word1, string word2)
{
//dp[i][j]:以word1[i-1]结尾,word2[j-1]为结尾的最小删除的操作次数
vector>dp(word1.size() + 1, vector(word2.size()+1));
for (int i = 0; i <= word1.size(); i++)
{//对于dp[i][0]的初始化
dp[i][0] = i;
}
for (int j = 0; j <= word2.size(); j++)
{
dp[0][j] = j;
}
for (int i = 1; i <= word1.size(); i++)
{
for (int j = 1; j <= word2.size(); j++)
{
if (word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1];
}
else
{
dp[i][j] = min(dp[i - 1][j]+1, min(dp[i][j - 1]+1, dp[i - 1][j - 1]+2));
}
}
}
return dp[word1.size()][word2.size()];
}
};
运行如下:
链接:力扣
描述:
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
思路如下:
动规五部曲,做一详细的分析:
1. 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。用i-1就是为了方便后面dp数组初始化的。
2. 确定递推公式
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换
也就是如上4种情况。
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是 dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]
呢?
那么就在回顾上面讲过的dp[i][j]
的定义,word1[i - 1]
与 word2[j - 1]
相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2
的最近编辑距离dp[i - 1][j - 1]
就是 dp[i][j]
了。
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了,如何编辑呢?
即 dp[i][j] = dp[i - 1][j] + 1;
即 dp[i][j] = dp[i][j - 1] + 1;
对于添加元素来说,计算过程与删除元素相反,word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和 word2
添加一个元素'd'
,变成word1="a", word2="ad"
, dp数组如下图所示意的:
操作三:替换元素,word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
递推公式代码如下:
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
3. dp数组如何初始化
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
所以C++代码如下:
4. 确定遍历顺序
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历。
代码如下:
class Solution {
public:
int minDistance(string word1, string word2)
{
//dp[i][j]:以word1[i]和word2[j]结尾的最小操作数
vector>dp(word1.size() + 1, vector(word2.size() + 1));
//初始化dp[i][0]
if (word1.size() == 0 || word2.size() == 0)
{
return word1.size() == 0 ? word2.size() : word1.size();
}
for (int i = 0; i <= word1.size(); i++)
{
dp[i][0] = i;
}
//初始化dp[0][j]
for (int j = 0; j <= word2.size(); j++)
{
dp[0][j] = j;
}
for (int i = 1; i <= word1.size(); i++)
{
for (int j = 1; j <= word2.size(); j++)
{
if (word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1];
}
else
{//替换或者删除word1[i]、word2[j]
dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1));
}
}
}
return dp[word1.size()][word2.size()];
}
};
运行如下: