第一个特征:在一个层次化的系统中,缓存一定是一个快速子系统,数据存在缓存中时,能避免每次从慢速子系统中存取数据。
第二个特征:缓存系统的容量大小总是小于后端慢速系统的,不可能把所有数据都放在缓存系统中。
把 Redis 用作缓存时,会把 Redis 部署在数据库的前端,业务应用在访问数据时,会先查询 Redis 中是否保存了相应的数据。此时,根据数据是否存在缓存中,会有两种情况。
应用程序想要使用 Redis
缓存,就要在程序中增加相应的缓存操作代码。所以,这时也把 Redis
称为旁路缓存,也就是说,读取缓存、读取数据库和更新缓存的操作都需要在应用程序中来完成。
使用 Redis 缓存时,具体来说,需要在应用程序中增加三方面的代码:
Redis
的 GET
操作接口,进行查询;SET
操作接口,把更新的数据写入缓存。做为对比的那就是CPU的1、2、3级缓存,对程序来说是透明的,不需要通过代码来使用,由CPU自己调度。
上面对缓存将的不清不楚,找了一些资料,发现这里讲的比较清晰,简单明了。
原文链接:https://blog.cdemi.io/design-patterns-cache-aside-pattern/
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2hL2fyks-1683545556795)(/Users/wangbo/Documents/typora-picture/Cache-Aside-Design-Pattern-Flow-Diagram.png)]
读取数据:读取数据时,请先从缓存读取。如果该数据存在于缓存中,就直接返回。如果该数据在缓存中不存在,则查询数据存储,在返回结果时,同时将该数据放置到缓存中。
更新数据:直接更新数据库中的数据、同时清除缓存中的数据。
按照 Redis
缓存是否接受写请求,我们可以把它分成只读缓存和读写缓存。
当 Redis
用作只读缓存时,应用要读取数据的话,会先调用 Redis GET
接口,查询数据是否存在。而所有的数据写请求,会直接发往后端的数据库,在数据库中增删改。对于删改的数据来说,如果 Redis 已经缓存了相应的数据,应用需要把这些缓存的数据删除,Redis
中就没有这些数据了。
当应用再次读取这些数据时,会发生缓存缺失,应用会把这些数据从数据库中读出来,并写到缓存中。这样一来,这些数据后续再被读取时,就可以直接从缓存中获取了,能起到加速访问的效果。
只读缓存直接在数据库中更新数据的好处是,所有最新的数据都在数据库中,而数据库是提供数据可靠性保障的,这些数据不会有丢失的风险。当我们需要缓存图片、短视频这些用户只读的数据时,就可以使用只读缓存这个类型了。
对于读写缓存来说,除了读请求会发送到缓存进行处理(直接在缓存中查询数据是否存在),所有的写请求也会发送到缓存,在缓存中直接对数据进行增删改操作。此时,得益于 Redis 的高性能访问特性,数据的增删改操作可以在缓存中快速完成,处理结果也会快速返回给业务应用,这就可以提升业务应用的响应速度。
但是,和只读缓存不一样的是,在使用读写缓存时,最新的数据是在 Redis
中,而 Redis
是内存数据库,一旦出现掉电或宕机,内存中的数据就会丢失。这也就是说,应用的最新数据可能会丢失,给应用业务带来风险。
所以,根据业务应用对数据可靠性和缓存性能的不同要求,我们会有同步直写和异步写回两种策略。其中,同步直写策略优先保证数据可靠性,而异步写回策略优先提供快速响应。
同步直写:写请求发给缓存的同时,也会发给后端数据库进行处理,等到缓存和数据库都写完数据,才给客户端返回。这样,即使缓存宕机或发生故障,最新的数据仍然保存在数据库中,这就提供了数据可靠性保证。
不过,同步直写会降低缓存的访问性能。这是因为缓存中处理写请求的速度是很快的,而数据库处理写请求的速度较慢。即使缓存很快地处理了写请求,也需要等待数据库处理完所有的写请求,才能给应用返回结果,这就增加了缓存的响应延迟。
异步写回:优先考虑响应延迟。所有写请求都先在缓存中处理。等到这些增改的数据要被从缓存中淘汰出来时,缓存将它们写回后端数据库。这样一来,处理这些数据的操作是在缓存中进行的,很快就能完成。只不过,如果发生了掉电,而它们还没有被写回数据库,就会有丢失的风险了。
关于是选择只读缓存,还是读写缓存,主要看对写请求是否有加速的需求。
“数据的一致性”包含了两种情况:
不符合这两种情况的,就属于缓存和数据库的数据不一致问题了。不过,当缓存的读写模式不同时,缓存数据不一致的发生情况不一样,应对方法也会有所不同,所以,按照上面第4节描述的,根据是否接收写请求,缓存可以分成读写缓存和只读缓存。
5.1、对于读写缓存,如果要对数据进行增删改,就需要在缓存中进行,同时还要根据采取的写回策略,决定是否同步写回到数据库中。
对于读写缓存来说,要想保证缓存和数据库中的数据一致,就要采用同步直写策略。不过,需要注意的是,如果采用这种策略,就需要同时更新缓存和数据库。所以,要在业务应用中使用事务机制,来保证缓存和数据库的更新具有原子性,也就是说,两者要不一起更新,要不都不更新,返回错误信息,进行重试。否则,就无法实现同步直写。
当在有些场景下,我对数据一致性的要求不高,就可以使用异步写回策略。
5.2、对于只读缓存,如果有数据新增,会直接写入数据库;而有数据删改时,就需要把只读缓存中的数据标记为无效。应用后续再访问这些增删改的数据时,因为缓存中没有相应的数据,就会发生缓存缺失。此时,应用再从数据库中把数据读入缓存,这样后续再访问数据时,就能够直接从缓存中读取了。
1. 新增数据
如果是新增数据,数据会直接写到数据库中,不用对缓存做任何操作,此时,缓存中本身就没有新增数据,而数据库中是最新值,这种情况符合我们刚刚所说的一致性的第 2 种情况,所以,此时,缓存和数据库的数据是一致的。
2. 删改数据
如果发生删改操作,应用既要更新数据库,也要在缓存中删除数据。这两个操作如果无法保证原子性,也就是说,要不都完成,要不都没完成,此时,就会出现数据不一致问题了。
假设应用先删除缓存,再更新数据库,如果缓存删除成功,但是数据库更新失败,那么,应用再访问数据时,缓存中没有数据,就会发生缓存缺失。然后,应用再访问数据库,但是数据库中的值为旧值,应用就访问到旧值了。
假如应用先完成了数据库的更新,但是,在删除缓存时失败了,那么,数据库中的值是新值,而缓存中的是旧值,这肯定是不一致的。这个时候,如果有其他的并发请求来访问数据,按照正常的缓存访问流程,就会先在缓存中查询,但此时,就会读到旧值了。
重试机制
具体来说,可以把要删除的缓存值或者是要更新的数据库值暂存到消息队列中(例如使用 Kafka 消息队列)。当应用没有能够成功地删除缓存值或者是更新数据库值时,可以从消息队列中重新读取这些值,然后再次进行删除或更新。
如果能够成功地删除或更新,就要把这些值从消息队列中去除,以免重复操作,此时,也可以保证数据库和缓存的数据一致了。否则的话,还需要再次进行重试。如果重试超过的一定次数,还是没有成功,就需要向业务层发送报错信息了。
刚刚说的是在更新数据库和删除缓存值的过程中,其中一个操作失败的情况,实际上,即使这两个操作第一次执行时都没有失败,当有大量并发请求时,应用还是有可能读到不一致的数据。
同样,按照不同的删除和更新顺序,分成两种情况来看。在这两种情况下,解决方法也有所不同。
情况一:先删除缓存,再更新数据库。
假设线程 A 删除缓存值后,还没有来得及更新数据库(比如说有网络延迟),线程 B 就开始读取数据了,那么这个时候,线程 B 会发现缓存缺失,就只能去数据库读取。这会带来两个问题:
等到线程 B 从数据库读取完数据、更新了缓存后,线程 A 才开始更新数据库,此时,缓存中的数据是旧值,而数据库中的是最新值,两者就不一致了。
在线程 A 更新完数据库值以后,我们可以让它先 sleep 一小段时间,再进行一次缓存删除操作。
之所以要加上 sleep 的这段时间,就是为了让线程 B 能够先从数据库读取数据,再把缺失的数据写入缓存,然后,线程 A 再进行删除。所以,线程 A sleep 的时间,就需要大于线程 B 读取数据再写入缓存的时间。这个时间怎么确定呢?需要在业务程序运行的时候,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算。
这样一来,其它线程读取数据时,会发现缓存缺失,所以会从数据库中读取最新值。因为这个方案会在第一次删除缓存值后,延迟一段时间再次进行删除,所以也把它叫做“延迟双删”。
情况二:先更新数据库值,再删除缓存值。
如果线程 A 删除了数据库中的值,但还没来得及删除缓存值,线程 B 就开始读取数据了,那么此时,线程 B 查询缓存时,发现缓存命中,就会直接从缓存中读取旧值。不过,在这种情况下,如果其他线程并发读缓存的请求不多,那么,就不会有很多请求读取到旧值。而且,线程 A 一般也会很快删除缓存值,这样一来,其他线程再次读取时,就会发生缓存缺失,进而从数据库中读取最新值。所以,这种情况对业务的影响较小。
对上面的情况做个总结
上面的情况可以用下面的图做个总结
缓存雪崩是指大量的应用请求无法在缓存(比如Redis)中进行处理,应用将大量请求发送到数据库层,导致数据库层的压力激增。
缓存雪崩一般是由两个原因导致的,应对方案也有所不同。
第一个情况是:缓存中有大量数据同时过期,导致大量请求无法得到处理。
具体来说,当数据保存在缓存中,并且设置了过期时间时,如果在某一个时刻,大量数据同时过期,此时,应用再访问这些数据的话,就会发生缓存缺失。紧接着,应用就会把请求发送给数据库,从数据库中读取数据。如果应用的并发请求量很大,那么数据库的压力也就很大,这会进一步影响到数据库的其他正常业务请求处理。
针对大量数据同时失效带来的缓存雪崩问题,有两种解决方案。
首先,避免给大量的数据设置相同的过期时间。如果业务层的确要求有些数据同时失效,你可以在用 EXPIRE
命令给每个数据设置过期时间时,给这些数据的过期时间增加一个较小的随机数(例如,随机增加 1~3 分钟),这样一来,不同数据的过期时间有所差别,但差别又不会太大,既避免了大量数据同时过期,同时也保证了这些数据基本在相近的时间失效,仍然能满足业务需求。
除了微调过期时间,还可以通过服务降级,来应对缓存雪崩。
服务降级,是指发生缓存雪崩时,针对不同的数据采取不同的处理方式。
这样一来,只有部分过期数据的请求会发送到数据库,数据库的压力就会大大减少。
另一种情况是:缓存实例故障宕机,无法处理请求,导致大量请求一下子积压到数据库层,从而发生缓存雪崩。
主要有两个解决方案。
第一个,是在业务系统中实现服务熔断或请求限流机制。
所谓的服务熔断,是指在发生缓存雪崩时,为了防止引发连锁的数据库雪崩,甚至是整个系统的崩溃,就可以暂停业务应用对缓存系统的接口访问。再具体点说,就是业务应用调用缓存接口时,缓存客户端并不把请求发给 Redis
缓存实例,而是直接返回,等到 Redis
缓存实例重新恢复服务后,再允许应用请求发送到缓存系统。
这样一来,我们就避免了大量请求因缓存缺失,而积压到数据库系统,保证了数据库系统的正常运行。
在业务系统运行时,我们可以监测 Redis
缓存所在机器和数据库所在机器的负载指标,例如每秒请求数、CPU 利用率、内存利用率等。如果发现 Redis
缓存实例宕机了,而数据库所在机器的负载压力突然增加(例如每秒请求数激增),大量请求被发送到数据库进行处理,就容易发生缓存雪崩。我们可以启动服务熔断机制,暂停业务应用对缓存服务的访问,从而降低对数据库的访问压力。
服务熔断虽然可以保证数据库的正常运行,但是暂停了整个缓存系统的访问,对业务应用的影响范围大。为了尽可能减少这种影响,也可以进行请求限流。这里说的请求限流,就是指,在业务系统的请求入口前端控制每秒进入系统的请求数,避免过多的请求被发送到数据库。
第二个是事前预防。
通过主从节点的方式构建 Redis
缓存高可靠集群。如果 Redis
缓存的主节点故障宕机了,从节点还可以切换成为主节点,继续提供缓存服务,避免了由于缓存实例宕机而导致的缓存雪崩问题。
缓存击穿是指,针对某个访问非常频繁的热点数据的请求,无法在缓存中进行处理,紧接着,访问该数据的大量请求,一下子都发送到了后端数据库,导致了数据库压力激增,影响数据库处理其他请求。
有两种解决方案:
第一种方案:对于访问特别频繁的热点数据,不设置过期时间了。这样一来,对热点数据的访问请求,都可以在缓存中进行处理。
在不需要严格数据一致性的情况下,可以通过一个异步线程在数据库更新或替换数据时直接重写缓存。
第二种方案:采用互斥锁方法。如果数据肯定会过期,那么在数据为空时设置一个互斥锁,只允许通过一个请求从数据库获取数据并更新缓存。在获取数据后,无论成功还是失败,都应该释放锁。对于其他请求,如果发现当前请求的数据为空同时已经被设置了互斥锁,则等待若干时间,比如几秒,直到缓存更新成功。当达到阈值后,再次查询缓存,如缓存没有就返回空值。
缓存穿透是指要访问的数据既不在 Redis 缓存中,也不在数据库中,导致请求在访问缓存时,发生缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据。此时,应用也无法从数据库中读取数据再写入缓存,来服务后续请求,这样一来,缓存成了“摆设”,如果应用持续有大量请求访问数据,就会同时给缓存和数据库带来巨大压力。
出现缓存穿透主要有三种情况:
有三种应对方案。
第一种方案,缓存空值或缺省值。
一旦发生缓存穿透,可以针对查询的数据,在 Redis
中缓存一个空值或是和业务层协商确定的缺省值(例如,库存的缺省值可以设为 0)并在短时间内缓存(不要设置较长的过期时间)。
第二种方案是,使用布隆过滤器快速判断数据是否存在,避免从数据库中查询数据是否存在,减轻数据库压力。
基于布隆过滤器的快速检测特性,可以在把数据写入数据库时,使用布隆过滤器(比如放置到程序内存中)做个标记。当缓存缺失后,应用查询数据库时,可以通过查询布隆过滤器快速判断数据是否存在。如果不存在,就不用再去数据库中查询了。
第三种方案是,在请求入口的前端进行请求检测。
缓存穿透的一个原因是有大量的恶意请求访问不存在的数据,所以,一个有效的应对方案是在请求入口前端,对业务系统接收到的请求进行合法性检测,把恶意的请求(例如请求参数不合理、请求参数是非法值、请求字段不存在)直接过滤掉,不让它们访问后端缓存和数据库。
缓存雪崩、缓存击穿、缓存穿透对比总结: