第J2周:ResNet50V2算法实战与解析

  • 本文为365天深度学习训练营 中的学习记录博客
  • 参考文章:365天深度学习训练营-第J2周:ResNet50V2算法实战与解析
  • 原作者:K同学啊|接辅导、项目定制

目录

    • 一、论文解读
      • 1. ResNetV2结构与ResNet结构对比
      • 2. 关于残差结构的不同尝试
      • 3. 关于激活的尝试
    • 二、模型复现
      • 1. Residual Block
      • 2. 堆叠Residual Block
      • 3. ResNet50V2架构复现
      • 4. 在cifar10上训练

本周任务:
●1.请根据本文 TensorFlow 代码,编写出相应的 Pytorch 代码(建议使用上周的数据测试一下模型是否构建正确)
●2.了解ResNetV2与ResNetV的区别
●3.改进思路是否可以迁移到其他地方呢(自由探索)

一、论文解读

1. ResNetV2结构与ResNet结构对比

第J2周:ResNet50V2算法实战与解析_第1张图片

实线表示测试误差(右边的y轴),虚线表示训练损失(左边的y轴),Iterations 表示迭代次数

改进点:(a)original 表示原始的 ResNet 的残差结构,(b)proposed 表示新的 ResNet 的残差结构。主要差别就是(a)结构先卷积后进行 BN 和激活函数计算,最后执行 addition 后再进行ReLU 计算; (b)结构先进行 BN 和激活函数计算后卷积,把 addition 后的 ReLU 计算放到了残差结构内部。

改进结果:作者使用这两种不同的结构在 CIFAR-10 数据集上做测试,模型用的是 1001层的 ResNet 模型。从图中结果我们可以看出,(b)proposed 的测试集错误率明显更低一些,达到了 4.92%的错误率,(a)original 的测试集错误率是 7.61%。

2. 关于残差结构的不同尝试

第J2周:ResNet50V2算法实战与解析_第2张图片
(b-f)中的快捷连接被不同的组件阻碍。为了简化插图,我们不显示BN层,这里所有单位均采用权值层之后的BN层。图中(a-f)都是作者对残差结构的 shortcut 部分进行的不同尝试 ,作者对不同 shortcut 结构的尝试结果如下表所示 。

第J2周:ResNet50V2算法实战与解析_第3张图片

使用ResNet-110在CIFAR-10测试集上的分类错误,对所有残差单元应用了不同类型的shortcut connections。当测试误差高于20%时,标注为“fail”。

作者用不同 shortcut 结构的 ResNet-110 在 CIFAR-10 数据集上做测试,发现最原始的(a)original 结构是最好的,也就是 identity mapping 恒等映射是最好的。

3. 关于激活的尝试

第J2周:ResNet50V2算法实战与解析_第4张图片
第J2周:ResNet50V2算法实战与解析_第5张图片

使用不同激活函数的CIFAR-10测试集上的分类误差(%)。

最好的结果是(e)full pre-activation,其次到(a)original。

二、模型复现

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
from torchsummary import summary


#忽略警告信息
warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

1. Residual Block

class Block2(nn.Module):
    def __init__(self, in_channel, filters, kernel_size=3, stride=1, conv_shortcut=False):
        super(Block2, self).__init__()
        self.preact = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.ReLU(True)
        )

        self.shortcut = conv_shortcut
        if self.shortcut:
            self.short = nn.Conv2d(in_channel, 4*filters, 1, stride=stride, padding=0, bias=False)
        elif stride>1:
            self.short = nn.MaxPool2d(kernel_size=1, stride=stride, padding=0)
        else:
            self.short = nn.Identity()

        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters, 1, stride=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters, filters, kernel_size, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv3 = nn.Conv2d(filters, 4*filters, 1, stride=1, bias=False)

    def forward(self, x):
        x1 = self.preact(x)
        if self.shortcut:
            x2 = self.short(x1)
        else:
            x2 = self.short(x)
        x1 = self.conv1(x1)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x = x1 + x2
        return x

2. 堆叠Residual Block

class Stack2(nn.Module):
    def __init__(self, in_channel, filters, blocks, stride=2):
        super(Stack2, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module(str(0), Block2(in_channel, filters, conv_shortcut=True))
        for i in range(1, blocks-1):
            self.conv.add_module(str(i), Block2(4*filters, filters))
        self.conv.add_module(str(blocks-1), Block2(4*filters, filters, stride=stride))

    def forward(self, x):
        x = self.conv(x)
        return x

3. ResNet50V2架构复现

第J2周:ResNet50V2算法实战与解析_第6张图片

class ResNet50V2(nn.Module):
    def __init__(self,
                 include_top=True,  # 是否包含位于网络顶部的全链接层
                 preact=True,  # 是否使用预激活
                 use_bias=True,  # 是否对卷积层使用偏置
                 input_shape=[224, 224, 3],
                 classes=1000,
                 pooling=None):  # 用于分类图像的可选类数
        super(ResNet50V2, self).__init__()

        self.conv1 = nn.Sequential()
        self.conv1.add_module('conv', nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=use_bias, padding_mode='zeros'))
        if not preact:
            self.conv1.add_module('bn', nn.BatchNorm2d(64))
            self.conv1.add_module('relu', nn.ReLU())
        self.conv1.add_module('max_pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.conv2 = Stack2(64, 64, 3)
        self.conv3 = Stack2(256, 128, 4)
        self.conv4 = Stack2(512, 256, 6)
        self.conv5 = Stack2(1024, 512, 3, stride=1)

        self.post = nn.Sequential()
        if preact:
            self.post.add_module('bn', nn.BatchNorm2d(2048))
            self.post.add_module('relu', nn.ReLU())
        if include_top:
            self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            self.post.add_module('flatten', nn.Flatten())
            self.post.add_module('fc', nn.Linear(2048, classes))
        else:
            if pooling=='avg':
                self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            elif pooling=='max':
                self.post.add_module('max_pool', nn.AdaptiveMaxPool2d((1, 1)))

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.post(x)
        return x


model = ResNet50V2().to(device)
summary(model, (3, 224, 224))

4. 在cifar10上训练

import torchvision.datasets as datasets
import torchvision.transforms as transforms

# 定义预处理转换
transform = transforms.Compose([
    transforms.ToTensor(),  # 将 PIL 图像转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])

# 加载 CIFAR-10 数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_loss,train_acc = 0,0
    for x,y in dataloader:
        x,y = x.to(device),y.to(device)
        pred = model(x)
        loss = loss_fn(pred,y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
    train_loss /= num_batches
    train_acc /= size
    return train_loss,train_acc
def test(dataloader,model,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss,test_acc = 0,0
    with torch.no_grad():
        for x,y in dataloader:
            x,y = x.to(device),y.to(device)
            pred = model(x)
            loss = loss_fn(pred,y)
            test_loss += loss.item()
            test_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
    test_loss /= num_batches
    test_acc /= size
    return test_loss,test_acc

参考文章:http://t.csdn.cn/VhPbf

你可能感兴趣的:(PyTorch教程与实战系列,算法,pytorch,人工智能,计算机视觉,深度学习)