官方实现很简单,貌似没啥需要解释的。。。。
注:相当吃显存啊
# --*-- coding:utf-8 --*--
import torch
from torch import nn, einsum
from einops import rearrange
from einops import repeat
from einops.layers.torch import Rearrange
import numpy as np
class SepConv2d(torch.nn.Module): # depth-wise conv2d + bn + 1x1 conv2d
def __init__(self, in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,):
super(SepConv2d, self).__init__()
self.depthwise = torch.nn.Conv2d(in_channels,
in_channels, kernel_size=kernel_size,
stride=stride, padding=padding,
dilation=dilation, groups=in_channels)
self.bn = torch.nn.BatchNorm2d(in_channels)
self.pointwise = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
x = self.pointwise(self.bn(self.depthwise(x)))
return x
class Residual(nn.Module): # 残差连接处
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class ConvAttention(nn.Module):
def __init__(self, dim, img_size, heads = 8, dim_head = 64, kernel_size=3, q_stride=1, k_stride=1, v_stride=1, dropout = 0.,
last_stage=False):
super().__init__()
self.last_stage = last_stage # 是否是最后一层, 最后一层需要加入cls token
self.img_size = img_size
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
pad = (kernel_size - q_stride)//2
self.to_q = SepConv2d(dim, inner_dim, kernel_size, q_stride, pad)
self.to_k = SepConv2d(dim, inner_dim, kernel_size, k_stride, pad)
self.to_v = SepConv2d(dim, inner_dim, kernel_size, v_stride, pad)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity() # 多头注意力情况下需要有一层线性融合
def forward(self, x):
b, n, _, h = *x.shape, self.heads
if self.last_stage:
cls_token = x[:, 0]
x = x[:, 1:]
cls_token = rearrange(cls_token.unsqueeze(1), 'b n (h d) -> b h n d', h = h)
x = rearrange(x, 'b (l w) n -> b n l w', l=self.img_size, w=self.img_size)
q = self.to_q(x)
q = rearrange(q, 'b (h d) l w -> b h (l w) d', h=h)
v = self.to_v(x)
v = rearrange(v, 'b (h d) l w -> b h (l w) d', h=h)
k = self.to_k(x)
k = rearrange(k, 'b (h d) l w -> b h (l w) d', h=h)
if self.last_stage:
q = torch.cat((cls_token, q), dim=2)
v = torch.cat((cls_token, v), dim=2)
k = torch.cat((cls_token, k), dim=2)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = dots.softmax(dim=-1)
out = einsum('b h i j, b h j d -> b h i d', attn, v) # 可以发现没有pos emb
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, img_size, depth, heads, dim_head, mlp_dim, dropout=0., last_stage=False):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, ConvAttention(dim, img_size, heads=heads, dim_head=dim_head, dropout=dropout, last_stage=last_stage)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
])) # attention或者FFN之前都需要进行LayerNorm
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class CvT(nn.Module):
def __init__(self, image_size, in_channels, num_classes, dim=64, kernels=[7, 3, 3], strides=[4, 2, 2], heads=[1, 3, 6] , depth = [1, 2, 10], pool='cls', dropout=0., emb_dropout=0., scale_dim=4):
super().__init__()
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.pool = pool
self.dim = dim
##### Stage 1 #######
self.stage1_conv_embed = nn.Sequential(
nn.Conv2d(in_channels, dim, kernels[0], strides[0], 2),
Rearrange('b c h w -> b (h w) c', h = image_size//4, w = image_size//4),
nn.LayerNorm(dim)
) # 可以发现 conv embed本质上就是conv2d + layerNorm
self.stage1_transformer = nn.Sequential(
Transformer(dim=dim, img_size=image_size//4,depth=depth[0], heads=heads[0], dim_head=self.dim, mlp_dim=dim * scale_dim, dropout=dropout),
Rearrange('b (h w) c -> b c h w', h = image_size//4, w = image_size//4)
)
##### Stage 2 #######
in_channels = dim
scale = heads[1]//heads[0]
dim = scale*dim
self.stage2_conv_embed = nn.Sequential(
nn.Conv2d(in_channels, dim, kernels[1], strides[1], 1),
Rearrange('b c h w -> b (h w) c', h = image_size//8, w = image_size//8),
nn.LayerNorm(dim)
)
self.stage2_transformer = nn.Sequential(
Transformer(dim=dim, img_size=image_size//8, depth=depth[1], heads=heads[1], dim_head=self.dim,
mlp_dim=dim * scale_dim, dropout=dropout),
Rearrange('b (h w) c -> b c h w', h = image_size//8, w = image_size//8)
)
##### Stage 3 #######
in_channels = dim
scale = heads[2] // heads[1] # heads和维度的关系
dim = scale * dim
self.stage3_conv_embed = nn.Sequential(
nn.Conv2d(in_channels, dim, kernels[2], strides[2], 1),
Rearrange('b c h w -> b (h w) c', h = image_size//16, w = image_size//16),
nn.LayerNorm(dim)
)
self.stage3_transformer = nn.Sequential(
Transformer(dim=dim, img_size=image_size//16, depth=depth[2], heads=heads[2], dim_head=self.dim, mlp_dim=dim * scale_dim, dropout=dropout, last_stage=True),
)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) # 只有最后一层加上cls token
self.dropout_large = nn.Dropout(emb_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
xs = self.stage1_conv_embed(img)
xs = self.stage1_transformer(xs)
xs = self.stage2_conv_embed(xs)
xs = self.stage2_transformer(xs)
xs = self.stage3_conv_embed(xs)
b, n, _ = xs.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
xs = torch.cat((cls_tokens, xs), dim=1)
xs = self.stage3_transformer(xs)
xs = xs.mean(dim=1) if self.pool == 'mean' else xs[:, 0]
xs = self.mlp_head(xs)
return xs