一、FreeRTOS简介
FreeRTOS 是一个可裁剪、可剥夺型的多任务内核,而且没有任务数限制。FreeRTOS 提供了实时操作系统所需的所有功能,包括资源管理、同步、任务通信等。
FreeRTOS 是用 C 和汇编来写的,其中绝大部分都是用 C 语言编写的,只有极少数的与处理器密切相关的部分代码才是用汇编写的,FreeRTOS 结构简洁,可读性很强!最主要的是非常适合初次接触嵌入式实时操作系统学生、嵌入式系统开发人员和爱好者学习。
最新版本 V9.0.0(2016年),尽管现在 FreeRTOS 的版本已经更新到 V10.4.1 了,但是我们还是选择 V9.0.0,因为内核很稳定,并且网上资料很多,因为 V10.0.0 版本之后是亚马逊收购了FreeRTOS之后才出来的版本,主要添加了一些云端组件,一般采用 V9.0.0 版本足以。
- FreeRTOS官网:http://www.freertos.org/
- 代码托管网站:https://sourceforge.net/projects/freertos/files/FreeRTOS/
二、新建工程
1. 打开 STM32CubeMX 软件,点击“新建工程”
2. 选择 MCU 和封装
3. 配置时钟
RCC 设置,选择 HSE(外部高速时钟) 为 Crystal/Ceramic Resonator(晶振/陶瓷谐振器)
选择 Clock Configuration,配置系统时钟 SYSCLK 为 72MHz
修改 HCLK 的值为 72 后,输入回车,软件会自动修改所有配置
4. 配置调试模式
非常重要的一步,否则会造成第一次烧录程序后续无法识别调试器
SYS 设置,选择 Debug 为 Serial Wire
三、SYS Timebase Source
在 System Core
中选择 SYS
,对 Timebase Source
进行设置,选择 TIM1
作为HAL库的时基(除了 SysTick
外都可以)。
在基于STM32 HAL的项目中,一般需要维护的 “时基” 主要有2个:
- HAL的时基,SYS Timebase Source
- OS的时基(仅在使用OS的情况下才考虑)
而这些 “时基” 该去如何维护,主要分为两种情况考虑:
裸机运行:
可以通过SysTick
(滴答定时器)或 (TIMx
)定时器 的方式来维护SYS Timebase Source
,也就是HAL库中的uwTick
,这是HAL库中维护的一个全局变量。在裸机运行的情况下,我们一般选择默认的SysTick
(滴答定时器) 方式即可,也就是直接放在SysTick_Handler()
中断服务函数中来维护。-
带OS运行:
前面提到的SYS Timebase Source
是STM32的HAL库中的新增部分,主要用于实现HAL_Delay()
以及作为各种 timeout 的时钟基准。在使用了OS(操作系统)之后,OS的运行也需要一个时钟基准(简称“时基”),来对任务和时间等进行管理。而OS的这个 时基 一般也都是通过
SysTick
(滴答定时器) 来维护的,这时就需要考虑 “HAL的时基” 和 “OS的时基” 是否要共用SysTick
(滴答定时器) 了。如果共用SysTick,当我们在CubeMX中选择启用FreeRTOS之后,在生成代码时,CubeMX一定会报如下提示:
强烈建议用户在使用FreeRTOS的时候,不要使用
SysTick
(滴答定时器)作为 “HAL的时基”,因为FreeRTOS要用,最好是要换一个!!!如果共用,潜在一定风险。
四、FreeRTOS
4.1 参数配置
如果要使用事件,要在 Middleware
中选择 FREERTOS
设置,并选择 CMSIS_V2
接口版本
CMSIS是一种接口标准,目的是屏蔽软硬件差异以提高软件的兼容性。RTOS v1使得软件能够在不同的实时操作系统下运行(屏蔽不同RTOS提供的API的差别),而RTOS v2则是拓展了RTOS v1,兼容更多的CPU架构和实时操作系统。因此我们在使用时可以根据实际情况选择,如果学习过程中使用STM32F1、F4等单片机时没必要选择RTOS v2,更高的兼容性背后时更加冗余的代码,理解起来比较困难。
在 Config parameters
进行具体参数配置。
Kernel settings:
- USE_PREEMPTION:
Enabled
:RTOS使用抢占式调度器;Disabled:RTOS使用协作式调度器(时间片)。 - TICK_RATE_HZ: 值设置为
1000
,即周期就是1ms。RTOS系统节拍中断的频率,单位为HZ。 - MAX_PRIORITIES: 可使用的最大优先级数量。设置好以后任务就可以使用从0到(MAX_PRIORITIES - 1)的优先级,其中0位最低优先级,(MAX_PRIORITIES - 1)为最高优先级。
- MINIMAL_STACK_SIZE: 设置空闲任务的最小任务堆栈大小,以字为单位,而不是字节。如该值设置为
128
Words,那么真正的堆栈大小就是 128*4 = 512 Byte。 - MAX_TASK_NAME_LEN: 设置任务名最大长度。
- IDLE_SHOULD_YIELD:
Enabled
空闲任务放弃CPU使用权给其他同优先级的用户任务。 - USE_MUTEXES: 为1时使用互斥信号量,相关的API函数会被编译。
- USE_RECURSIVE_MUTEXES: 为1时使用递归互斥信号量,相关的API函数会被编译。
- USE_COUNTING_SEMAPHORES: 为1时启用计数型信号量, 相关的API函数会被编译。
- QUEUE_REGISTRY_SIZE: 设置可以注册的队列和信号量的最大数量,在使用内核调试器查看信号量和队列的时候需要设置此宏,而且要先将消息队列和信号量进行注册,只有注册了的队列和信号量才会在内核调试器中看到,如果不使用内核调试器的话次宏设置为0即可。
- USE_APPLICATION_TASK_TAG: 为1时可以使用vTaskSetApplicationTaskTag函数。
- ENABLE_BACKWARD_COMPATIBILITY: 为1时可以使V8.0.0之前的FreeRTOS用户代码直接升级到V8.0.0之后,而不需要做任何修改。
- USE_PORT_OPTIMISED_TASK_SELECTION: FreeRTOS有两种方法来选择下一个要运行的任务,一个是通用的方法,另外一个是特殊的方法,也就是硬件方法,使用MCU自带的硬件指令来实现。STM32有计算前导零指令吗,所以这里强制置1。
- USE_TICKLESS_IDLE: 置1:使能低功耗tickless模式;置0:保持系统节拍(tick)中断一直运行。假设开启低功耗的话可能会导致下载出现问题,因为程序在睡眠中,可用ISP下载办法解决。
- USE_TASK_NOTIFICATIONS: 为1时使用任务通知功能,相关的API函数会被编译。开启了此功能,每个任务会多消耗8个字节。
- RECORD_STACK_HIGH_ADDRESS: 为1时栈开始地址会被保存到每个任务的TCB中(假如栈是向下生长的)。
Memory management settings:
- Memory Allocation:
Dynamic/Static
支持动态/静态内存申请 - TOTAL_HEAP_SIZE: 设置堆大小,如果使用了动态内存管理,FreeRTOS在创建 task, queue, mutex, software timer or semaphore的时候就会使用heap_x.c(x为1~5)中的内存申请函数来申请内存。这些内存就是从堆ucHeap[configTOTAL_HEAP_SIZE]中申请的。
- Memory Management scheme: 内存管理策略
heap_4
。
Hook function related definitions:
- USE_IDLE_HOOK: 置1:使用空闲钩子(Idle Hook类似于回调函数);置0:忽略空闲钩子。
- USE_TICK_HOOK: 置1:使用时间片钩子(Tick Hook);置0:忽略时间片钩子。
- USE_MALLOC_FAILED_HOOK: 使用内存申请失败钩子函数。
- CHECK_FOR_STACK_OVERFLOW: 大于0时启用堆栈溢出检测功能,如果使用此功能用户必须提供一个栈溢出钩子函数,如果使用的话此值可以为1或者2,因为有两种栈溢出检测方法。
Run time and task stats gathering related definitions:
- GENERATE_RUN_TIME_STATS: 启用运行时间统计功能。
- USE_TRACE_FACILITY: 启用可视化跟踪调试。
- USE_STATS_FORMATTING_FUNCTIONS: 与宏configUSE_TRACE_FACILITY同时为1时会编译下面3个函数prvWriteNameToBuffer()、vTaskList()、vTaskGetRunTimeStats()。
Co-routine related definitions:
- USE_CO_ROUTINES: 启用协程。
- MAX_CO_ROUTINE_PRIORITIES: 协程的有效优先级数目。
Software timer definitions:
- USE_TIMERS: 启用软件定时器。
Interrupt nesting behaviour configuration:
- LIBRARY_LOWEST_INTERRUPT_PRIORITY: 中断最低优先级。
- LIBRARY_LOWEST_INTERRUPT_PRIORITY: 系统可管理的最高中断优先级。
4.2 创建事件Event
要想使用事件必须在
Middleware
中选择FREERTOS
设置,并选择CMSIS_V2
接口版本。
在 Events
进行配置。
- Event flags Name: 事件组名称
- Allocation: 分配方式:
Dynamic
动态内存创建 - Conrol Block Name: 控制块名称
4.3 创建任务Task
我们创建两个任务,一个触发事件任务,一个等待事件任务。
- Task Name: 任务名称
- Priority: 优先级,在 FreeRTOS 中,数值越大优先级越高,0 代表最低优先级
- Stack Size (Words): 堆栈大小,单位为字,在32位处理器(STM32),一个字等于4字节,如果传入512那么任务大小为512*4字节
- Entry Function: 入口函数
- Code Generation Option: 代码生成选项
- Parameter: 任务入口函数形参,不用的时候配置为0或NULL即可
- Allocation: 分配方式:
Dynamic
动态内存创建 - Buffer Name: 缓冲区名称
- Conrol Block Name: 控制块名称
五、KEY
5.1 参数配置
在 System Core
中选择 GPIO
设置。
在右边图中找到按键对应引脚,选择
GPIO_Input
。
六、UART串口打印
查看 STM32CubeMX学习笔记(6)——USART串口使用
七、生成代码
输入项目名和项目路径
选择应用的 IDE 开发环境 MDK-ARM V5
每个外设生成独立的
’.c/.h’
文件
不勾:所有初始化代码都生成在 main.c
勾选:初始化代码生成在对应的外设文件。 如 GPIO 初始化代码生成在 gpio.c 中。
点击 GENERATE CODE 生成代码
八、互斥量
8.1 基本概念
事件是一种实现任务间通信的机制,主要用于实现多任务间的同步,但事件通信只能是事件类型的通信,无数据传输。 与信号量不同的是,它可以实现一对多,多对多的同步。即一个任务可以等待多个事件的发生:可以是任意一个事件发生时唤醒任务进行事件处理;也可以是几个事件都发生后才唤醒任务进行事件处理。同样,也可以是多个任务同步多个事件。
每一个事件组只需要很少的 RAM 空间来保存事件组的状态。事件组存储在一个 EventBits_t 类型的变量中,该变量在事件组结构体中定义 。在 STM32 中 , 我们一般 configUSE_16_BIT_TICKS 定义为 0,那么 uxEventBits 是 32 位的,有 24 个位用来实现事 件标志组。每一位代表一个事件,任务通过“逻辑与”或“逻辑或”与一个或多个事件建立关联,形成一个事件组。 事件的“逻辑或”也被称作是独立型同步,指的是任务感兴趣的所有事件任一件发生即可被唤醒;事件“逻辑与”则被称为是关联型同步,指的是任务感兴趣的若干事件都发生时才被唤醒,并且事件发生的时间可以不同步。
多任务环境下,任务、中断之间往往需要同步操作,一个事件发生会告知等待中的任务,即形成一个任务与任务、中断与任务间的同步。 事件可以提供一对多、多对多的同步操作。一对多同步模型:一个任务等待多个事件的触发,这种情况是比较常见的;多对多同步模型:多个任务等待多个事件的触发。
任务可以通过设置事件位来实现事件的触发和等待操作。FreeRTOS 的事件仅用于同步,不提供数据传输功能。
FreeRTOS 提供的事件具有如下特点:
- 事件只与任务相关联,事件相互独立,一个 32 位的事件集合(EventBits_t 类型的变量,实际可用与表示事件的只有 24 位),用于标识该任务发生的事件类型,其中每一位表示一种事件类型(0 表示该事件类型未发生、1 表示该事件类型已经发生),一共 24 种事件类型。
- 事件仅用于同步,不提供数据传输功能。
- 事件无排队性,即多次向任务设置同一事件(如果任务还未来得及读走),等效于只设置一次。
- 允许多个任务对同一事件进行读写操作。
- 支持事件等待超时机制。
在 FreeRTOS 事件中,每个事件获取的时候,用户可以选择感兴趣的事件,并且选择读取事件信息标记,它有三个属性,分别是逻辑与,逻辑或以及是否清除标记。当任务等待事件同步时,可以通过任务感兴趣的事件位和事件信息标记来判断当前接收的事件是否满足要求,如果满足则说明任务等待到对应的事件,系统将唤醒等待的任务;否则,任务会根据用户指定的阻塞超时时间继续等待下去。
8.2 运作机制
接收事件时,可以根据感兴趣的参事件类型接收事件的单个或者多个事件类型。事件接收成功后,必须使用 xClearOnExit 选项来清除已接收到的事件类型,否则不会清除已接收到的事件,这样就需要用户显式清除事件位。用户可以自定义通过传入参数 xWaitForAllBits 选择读取模式,是等待所有感兴趣的事件还是等待感兴趣的任意一个事件。
设置事件时,对指定事件写入指定的事件类型,设置事件集合的对应事件位为 1,可以一次同时写多个事件类型,设置事件成功可能会触发任务调度。清除事件时,根据入参数事件句柄和待清除的事件类型,对事件对应位进行清 0 操作。事件不与任务相关联,事件相互独立,一个 32 位的变量(事件集合,实际用于表示事件的只有 24 位),用于标识该任务发生的事件类型,其中每一位表示一种事件类型(0 表示该事件类型未发生、1 表示该事件类型已经发生),一共 24 种事件类型。
事件唤醒机制,当任务因为等待某个或者多个事件发生而进入阻塞态,当事件发生的时候会被唤醒。
任务 1 对事件 3 或事件 5 感兴趣(逻辑或),当发生其中的某一个事件都会被唤醒,并且执行相应操作。而任务 2 对事件 3 与事件 5 感兴趣(逻辑与),当且仅当事件 3 与事件 5 都发生的时候,任务 2 才会被唤醒,如果只有一个其中一个事件发生,那么任务还是会继续等待事件发生。如果接在收事件函数中设置了清除事件位 xClearOnExit,那么当任务唤醒后将把事件 3 和事件 5 的事件标志清零,否则事件标志将依然存在。
九、相关API说明
9.1 osEventFlagsNew
用于创建一个事件组,并返回对应的ID。
函数 | osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr) |
---|---|
参数 | attr: 引用由osEventFlagsAttr_t定义的事件属性 |
返回值 | 成功返回事件组ID,失败返回0 |
9.2 osEventFlagsDelete
当系统不再使用事件对象时,可以通过删除事件对象控制块来释放系统资源。
函数 | osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id) |
---|---|
参数 | ef_id: 事件组ID |
返回值 | 错误码 |
9.3 osEventFlagsSet
用于置位事件组中指定的位,当位被置位之后,阻塞在该位上的任务将会被解锁。使用该函数接口时,通过参数指定的事件标志来设定事件的标志位,然后遍历等待在事件对象上的事件等待列表,判断是否有任务的事件激活要求与当前事件对象标志值匹配,如果有,则唤醒该任务。简单来说,就是设置我们自己定义的事件标志位为 1,并且看看有没有任务在等待这个事件,有的话就唤醒它。该函数可以在中断中使用。
函数 | uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags) |
---|---|
参数 | ef_id: 事件组ID flags: 指定事件中的事件标志位。如设置 uxBitsToSet 为 0x08 则只置位位 3,如果设置 uxBitsToSet 为 0x09 则位 3 和位 0 都需要被置位 |
返回值 | 返回调用 osEventFlagsSet() 时事件组中的值 |
要想在中断中使用该函数必须在 Include parameters
中把 xEventGroupSetBitFromISR
选择 Enabled
来使能。
9.4 osEventFlagsWait
用于获取事件组中的一个或多个事件发生标志,当要读取的事件标志位没有被置位时任务将进入阻塞等待状态。
函数 | uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout) |
---|---|
参数 | ef_id: 事件组ID flags: 指定事件中的事件标志位。如设置 uxBitsToSet 为 0x08 则只置位位 3,如果设置 uxBitsToSet 为 0x09 则位 3 和位 0 都需要被置位 options:osFlagsNoClear是否清除flags指定的事件标志位,osFlagsWaitAll是否 等待flags指定的位都置位的时候才满足任务唤醒的条件 timeout:最大超时时间,单位为系统节拍周期,常量 portTICK_PERIOD_MS 用于辅助把时间转换成 MS |
返回值 | 返回事件中的哪些事件标志位被置位,返回值很可能并不是用户指定的事件位,需要对返回值进行判断再处理 |
9.5 osEventFlagsClear
用于清除事件组指定的位,如果在获取事件的时候没有将对应的标志位清除,那么就需要用这个函数来进行显式清除。该函数可以在中断中使用。
函数 | uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags) |
---|---|
参数 | ef_id: 事件组ID flags: 指定事件组中的哪个位需要清除。如设置 uxBitsToSet 为 0x08 则只清除位 3,如果设置 uxBitsToSet 为 0x09 则位 3 和位 0 都需要被清除 |
返回值 | 事件在还没有清除指定位之前的值 |
十、示例
10.1 任务式
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include
#include
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define KEY1_EVENT (0x01 << 0)//设置事件掩码的位 0
#define KEY2_EVENT (0x01 << 1)//设置事件掩码的位 1
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;
DMA_HandleTypeDef hdma_usart1_tx;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for Send */
osThreadId_t SendHandle;
const osThreadAttr_t Send_attributes = {
.name = "Send",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for Receive */
osThreadId_t ReceiveHandle;
const osThreadAttr_t Receive_attributes = {
.name = "Receive",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for Event */
osEventFlagsId_t EventHandle;
const osEventFlagsAttr_t Event_attributes = {
.name = "Event"
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void SendTask(void *argument);
void ReceiveTask(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of Send */
SendHandle = osThreadNew(SendTask, NULL, &Send_attributes);
/* creation of Receive */
ReceiveHandle = osThreadNew(ReceiveTask, NULL, &Receive_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Create the event(s) */
/* creation of Event */
EventHandle = osEventFlagsNew(&Event_attributes);
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LED_G_Pin|LED_B_Pin|LED_R_Pin, GPIO_PIN_SET);
/*Configure GPIO pin : KEY2_Pin */
GPIO_InitStruct.Pin = KEY2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEY2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : KEY1_Pin */
GPIO_InitStruct.Pin = KEY1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEY1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LED_G_Pin LED_B_Pin LED_R_Pin */
GPIO_InitStruct.Pin = LED_G_Pin|LED_B_Pin|LED_R_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief 重定向c库函数printf到USARTx
* @retval None
*/
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
return ch;
}
/**
* @brief 重定向c库函数getchar,scanf到USARTx
* @retval None
*/
int fgetc(FILE *f)
{
uint8_t ch = 0;
HAL_UART_Receive(&huart1, &ch, 1, 0xffff);
return ch;
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_SendTask */
/**
* @brief Function implementing the Send thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_SendTask */
void SendTask(void *argument)
{
/* USER CODE BEGIN SendTask */
/* Infinite loop */
for(;;)
{
//如果 KEY1 被按下
if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin) == GPIO_PIN_SET)
{
printf("KEY1 down\n");
/* 触发一个事件 1 */
osEventFlagsSet(EventHandle, KEY1_EVENT);
}
//如果 KEY2 被按下
if(HAL_GPIO_ReadPin(KEY2_GPIO_Port, KEY2_Pin) == GPIO_PIN_SET)
{
printf("KEY2 down\n");
/* 触发一个事件 2 */
osEventFlagsSet(EventHandle, KEY2_EVENT);
}
osDelay(100);
}
/* USER CODE END SendTask */
}
/* USER CODE BEGIN Header_ReceiveTask */
/**
* @brief Function implementing the Receive thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_ReceiveTask */
void ReceiveTask(void *argument)
{
/* USER CODE BEGIN ReceiveTask */
uint32_t r_event; /* 定义一个事件接收变量 */
/* Infinite loop */
for(;;)
{
/*************************************************************
* 等待接收事件标志
*
* 如果不设置为 osFlagsNoClear,那么在 osEventFlagsWait()返回之前,
* 如果满足等待条件(如果函数返回的原因不是超时),那么在事件组中设置
* 的 flags 中的任何位都将被清除。
* 如果设置为 osFlagsNoClear,
* 则在调用 osEventFlagsWait()时,不会更改事件组中设置的位。
*
* 如果设置为 osFlagsWaitAll,则当 flags 中
* 的所有位都设置或指定的块时间到期时,osEventFlagsWait()才返回。
* 如果不设置为 osFlagsWaitAll,则当设置 flasgs 中设置的任何
* 一个位置 1 或指定的块时间到期时,osEventFlagsWait()都会返回。
* 阻塞时间由 timeout 参数指定。
*********************************************************/
r_event = osEventFlagsWait(EventHandle, /* 事件对象句柄 */
KEY1_EVENT|KEY2_EVENT, /* 接收任务感兴趣的事件 */
osFlagsWaitAll, /* 退出时清除事件位,同时满足感兴趣的所有事件 */
osWaitForever); /* 指定超时事件,一直等 */
if((r_event & (KEY1_EVENT|KEY2_EVENT)) == (KEY1_EVENT|KEY2_EVENT))
{
/* 如果接收完成并且正确 */
printf ("KEY1 and KEY2 down\n");
}
else
{
printf ("Event Error!\n");
}
}
/* USER CODE END ReceiveTask */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
查看打印:
只有当两个按键都按下过才触发
10.2 工程代码
链接:https://pan.baidu.com/s/13Uh4eFqd3R9590nxYxR5iw 提取码:nomi
十一、注意事项
用户代码要加在 USER CODE BEGIN N
和 USER CODE END N
之间,否则下次使用 STM32CubeMX 重新生成代码后,会被删除。
• 由 Leung 写于 2021 年 12 月 31 日
• 参考:STM32CubeIDE(十一):FreeRTOS选项中Disable、CMSIS_V1和CMSIS_V2的区别
HAL库中的 SYS Timebase Source 和 SysTick_Handler()