- 27.2:Python的Django框架优点和缺点是什么?
小兔子平安
Python完整学习全解答pythondjango后端
课程概述①易于学习和使用②高度可定制③强大的安全性④性能问题——举例分析(博客应用程序,包括博客文章、评论和标签等功能)——举例分析(电子商务网站,包括商品、购物车和订单等功能)课程总结课程概述Python作为一种强大而又易于学习的编程语言,已经被广泛应用于各种领域,尤其是Web开发领域。而Django框架作为PythonWeb开发的一个重要组成部分,具有一些独特的优点和缺点,需要开发人员在使用时
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- 批量图片水印添加工具
木木黄木木
python
批量图片水印添加工具这是一个可以批量给图片添加水印的Python程序。程序会根据原始图片的分辨率自动调整水印大小,确保水印效果美观。这里写目录标题批量图片水印添加工具功能特点运行说明注意事项下载地址功能特点支持批量处理多个图片自动根据原图尺寸调整水印大小支持PNG格式的透明水印水印位置固定在右下角支持JPG、JPEG、PNG、BMP等格式的图片运行说明准备文件:将需要添加水印的图片放入input文
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- PythonWeb——Django框架
Error_exception_worn
Python基础数据库Pythondjango
框架介绍1.什么是框架?框架就是程序的骨架,主体结构,也是个半成品。2.框架的优缺点可重用、成熟,稳健、易扩展、易维护3.Python中常见的框架大包大揽Django被官方称之为完美主义者的Web框架。力求精简web.py和Tornado新生代微框架Flask和Bottle4.Web框架中的一些概念MVC(模型-视图-控制器)和MVT(模型-视图-模板)Django框架介绍Django是一个高级的
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 【报错】zipfile.BadZipFile: File is not a zip file
Jude_lennon
报错python
pythonpd.read_excel(excel_path,sheet_name='Sheet1',engine='openpyxl',header=None)出现报错zipfile.BadZipFile:Fileisnotazipfile原代码:data_list=[load_graph_data(file)forfileindata_directory.glob("*.xlsx")]经过de
- 动手学深度学习V2.0(Pytorch)——10.感知机(激活函数)
吨吨不打野
动手学深度学习pytorchpytorch深度学习机器学习
文章目录1.感知机2.多层感知机2.1异或问题2.2单隐藏层2.3激活函数2.3.1logistics函数/sigmoid激活函数2.3.2tanh函数2.3.3sigmoid函数和tanh函数的异同/优缺点2.3.4relu2.4多类分类2.5多隐藏层3Q&A3.1神经网络中一层的定义是什么3.2感知机无法解决XOR问题,多层感知机虽然可以解决,但是还是被SVM替代是为什么?3.3不同任务的激活
- Python实现链表反转:迭代与递归双解法详解
达不溜先生 ୧⍢⃝୨
python数据结构链表算法leetcode
目录一、问题描述二、核心代码实现2.1迭代法实现迭代法中的prev初始值是None的原因:关键步骤图解2.2递归法实现递归法中要设置head.next=None的原因递归过程拆解三、方法对比与选择建议一、问题描述链表反转是数据结构中的基础算法问题,常见于面试和算法题库(如LeetCode#206)。要求将单向链表的节点顺序完全倒置二、核心代码实现2.1迭代法实现时间复杂度:O(n)空间复杂度:O(
- 探索IT世界的宝藏:优质资源推荐与深度解析
点我头像干啥
Ai分类人工智能数据挖掘python深度学习
引言在当今数字化时代,信息技术(IT)已经成为推动社会进步和经济发展的重要引擎。无论是软件开发、网络安全、数据分析,还是人工智能、云计算等领域,IT技术都在不断革新和演进。对于IT从业者、学生以及技术爱好者来说,掌握最新的技术动态和获取优质的学习资源至关重要。本文将为大家推荐一些优质的IT资源,并深入探讨如何利用这些资源提升自己的技术能力。一、优质IT资源推荐1.在线学习平台1.1Coursera
- DeepSeek大语言模型下几个常用术语
曲幽
AI计算机语言模型人工智能自然语言处理deepseekollamaai
昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思)更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程基本概念AI人工智能NLP自然语言处理LLM大语言模型HuggingFace一个提供了丰富的预训练模型和工具库的平台网站Ollama开源的本地大语言模型运行框架,用来在本地部署调用大语言模型,如D
- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- Django框架的全面指南:从入门到高级
步入烟尘
Python超入门指南全册djangosqlite数据库
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- Sijia_y的个人经历以及计算机行业发展
Sijia_y
python
如今互联网发展的速度甚是快,以至于技术都在更新迭代。稍有不注意可能就会被淘汰甚至是替代。作为一名中专生,我的成绩也是很差。因为高中考不上的缘故,来到了江苏上学。计算机行业我了解的并不是很多,当时只是听说工资高,铁饭碗。我是一个很懒的人,也是很贪玩。并没有学习很高的兴趣。我接触编程语言,完全是因为我的朋友。因为他是自学C语言的,后面他参加比赛得奖了。我就觉得非常厉害。我就开始学习Python,学会一
- 10 大中文医学数据集汇总:涵盖神农中医药、中医药古籍、医学推理、医学问答……
医疗人工智能的快速发展离不开高质量数据集的支持。从疾病诊断到药物研发,再到个性化医疗,数据集在推动机器视觉、大模型等应用于医学领域中发挥着不可或缺的作用。医学数据集的形式多样,涵盖了不同维度和领域的数据资源。例如,在疾病诊断领域,像RJUA-QA这样的问答数据集推动了复杂医学知识的自动化应用;而在中医药领域,神农中医药数据集整合了传统中医药文献、临床案例和药方数据。针对于此,本文整理了医学领域的1
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- 空间智能数据集(不定期更新)
数据集
在人工智能领域的顶级会议NeurIPS上,斯坦福大学的杰出教授李飞飞发表了题为《FromSeeingtoDoing:AscendingtheLadderofVisualIntelligence》的主题演讲。在这次演讲中,李飞飞教授探讨了机器视觉的未来以及人工智能如何塑造我们的现实世界。她强调了空间智能的重要性,并将其视为全面智能的基石。李飞飞教授指出,解决空间智能问题是迈向全面智能的基础性、关键性
- 为什么Python使用者远远大于perl
perlpython
不认为两者的语法差异是造成如此局面的主要原因.perl的语法虽然比较特立独行,但也不是很难.总结如下原因:library(或者叫package)的使用如果是本语言原生的library,那没有问题.如果是需要调用外部函数/过程的package的话,那么就会有巨大的差异.python是预编译然后从pypi上下载python(pip)将package下载到本地然后解压后将package内容安装到不同的指
- AI 问答系统实战:用 Python + Flask + LLM 打造你的智能对话机器人!
Leaton Lee
人工智能pythonflask
开篇互动:你是否想拥属于自己的AI问答机器人?“你是否想过拥有一个可以随时为你解答问题、提供建议的AI助手?”随着大语言模型(LLM)的快速发展,打造一个智能问答系统已经成为可能!本文将手把手教你如何利用Python和Flask快速搭建一个属于自己的AI问答系统,并集成强大的语言模型(如OpenAI的GPT-3.5或HuggingFace的LLaMA)。无论是技术小白还是有一定经验的开发者,都能轻
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 入坑 Python 全能实战小白训练营,470 集干货 12.9G 大揭秘!
七七知享
Pythonpython开发语言pandasnumpymatplotlibjavaphp
家人们,我最近挖到了一个Python学习的宝藏——Python全能实战小白训练营。整整470集,内容超丰富,资源包有12.9G,完全就是为咱们这些想系统学习Python的小白量身定制的。接下来就给大家好好唠唠。随着课程深入,会涉及到Python的各种高级特性,比如面向对象编程、模块与包的使用。在讲面向对象编程时,老师通过打造一个小型游戏角色系统,把类、对象、继承、多态这些抽象概念诠释得生动形象,让
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习pytorch之简单方法自定义9类卷积即插即用
@Mr_LiuYang
计算机视觉基础卷积类型非对称卷积深度卷积空洞卷积组卷积深度可分离卷积动态卷积
本文详细解析了PyTorch中torch.nn.Conv2d的核心参数,通过代码示例演示了如何利用这一基础函数实现多种卷积操作。涵盖的卷积类型包括:标准卷积、逐点卷积(1x1卷积)、非对称卷积(长宽不等的卷积核)、空洞卷积(扩大感受野)、深度卷积(逐通道滤波)、组卷积(分组独立处理)、深度可分离卷积(深度+逐点组合)、转置卷积(上采样)和动态卷积(动态生成卷积核),帮助读者理解如何通过调整参数灵活
- PyCharm 对接 DeepSeek 大模型的详细操作流程
程之编
pycharmidepython
以下是使用PyCharm对接DeepSeek大模型的详细操作流程,基于Python开发环境。假设你已具备DeepSeekAPI的访问权限(需提前申请APIKey):步骤1:PyCharm环境准备创建新项目打开PyCharm→NewProject→选择纯Python项目→指定项目路径→创建虚拟环境(建议选Virtualenv)。安装依赖库打开终端(Terminal)执行以下命令:pipinstall
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- 清华DeepSeek以手札为剑,破AI迷津雾霭,开启荣耀进阶征途
2501_91080610
pdf
清华DeepSeek:以手札为剑,破AI迷津雾霭,开启荣耀进阶征途在当下这个科技浪潮奔涌不息的时代,人工智能领域成为了无数科研人员竞逐的“战场”。在这片充满无限可能却又迷雾重重的天地中,清华DeepSeek宛如一位英勇无畏的剑客,紧握“手札”这把利剑,奋力劈开迷津雾霭,大步踏上荣耀进阶的征途。溯源:手札中的智慧传承与沉淀清华DeepSeek背后,是一群怀揣着对AI炽热梦想的清华学子与科研精英。手札
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 模型上下文协议(MCP):构建 AI 与数据交互的新范式
xxgshxs
人工智能chatgptprompt文心一言llamacopilot
引言在人工智能领域,大型语言模型(LLMs)的应用正从通用问答向复杂任务执行演进,但数据孤岛、工具集成碎片化及隐私安全等问题制约了其潜力。模型上下文协议(ModelContextProtocol,MCP)作为Anthropic提出的开放标准,旨在通过标准化接口连接AI应用与异构数据源及工具,重塑AI开发范式。本文从技术架构、核心功能、应用场景等维度解析MCP的设计逻辑与实践价值。一、核心概念与设计
- 量子计算如何颠覆能源优化领域:从理论到实践
Echo_Wish
人工智能前沿技术量子计算能源
量子计算如何颠覆能源优化领域:从理论到实践大家好,我是Echo_Wish,一个热爱探索前沿技术的人工智能与Python领域的技术分享者。今天,我们将深入探讨一个激动人心的话题——量子计算在能源优化中的应用。这不仅是科技领域的全新趋势,也可能为全人类的能源利用效率带来革命性突破。从理论模型到实际应用,量子计算已经在一些能源相关领域崭露头角,例如电网优化、可再生能源分配和物流节能规划。以下,让我们一步
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen