2020-12-19

前言

Python非常适合用来开发网页爬虫,理由如下:

1、抓取网页本身的接口

相比与其他静态编程语言,如java,c#,c++,python抓取网页文档的接口更简洁;相比其他动态脚本语言,如perl,shell,python的urllib包提供了较为完整的访问网页文档的API。(当然ruby也是很好的选择)

此外,抓取网页有时候需要模拟浏览器的行为,很多网站对于生硬的爬虫抓取都是封杀的。这是我们需要模拟user agent的行为构造合适的请求,譬如模拟用户登陆、模拟session/cookie的存储和设置。在python里都有非常优秀的第三方包帮你搞定,如Requests,mechanize

2、网页抓取后的处理

抓取的网页通常需要处理,比如过滤html标签,提取文本等。python的beautifulsoap提供了简洁的文档处理功能,能用极短的代码完成大部分文档的处理。

其实以上功能很多语言和工具都能做,但是用python能够干得最快,最干净。

PS:python2.x和python3.x有很大不同,本文只讨论python3.x的爬虫实现方法。

爬虫架构

架构组成

URL管理器:管理待爬取的url集合和已爬取的url集合,传送待爬取的url给网页下载器。

网页下载器(urllib):爬取url对应的网页,存储成字符串,传送给网页解析器。

网页解析器(BeautifulSoup):解析出有价值的数据,存储下来,同时补充url到URL管理器。

运行流程

URL管理器

基本功能

添加新的url到待爬取url集合中。

判断待添加的url是否在容器中(包括待爬取url集合和已爬取url集合)。

获取待爬取的url。

判断是否有待爬取的url。

将爬取完成的url从待爬取url集合移动到已爬取url集合。

存储方式

1、内存(python内存)

待爬取url集合:set()

已爬取url集合:set()

2、关系数据库(mysql)

urls(url, is_crawled)

3、缓存(redis)

待爬取url集合:set

已爬取url集合:set

大型互联网公司,由于缓存数据库的高性能,一般把url存储在缓存数据库中。小型公司,一般把url存储在内存中,如果想要永久存储,则存储到关系数据库中。

网页下载器(urllib)

将url对应的网页下载到本地,存储成一个文件或字符串。

基本方法

新建baidu.py,内容如下:

import urllib.request

response = urllib.request.urlopen('http://www.baidu.com')

buff = response.read()

html = buff.decode("utf8")

print(html)

命令行中执行python baidu.py,则可以打印出获取到的页面。

构造Request

上面的代码,可以修改为:

import urllib.request

request = urllib.request.Request('http://www.baidu.com')

response = urllib.request.urlopen(request)

buff = response.read()

html = buff.decode("utf8")

print(html)

携带参数

新建baidu2.py,内容如下:

import urllib.request

import urllib.parse

url = 'http://www.baidu.com'

values = {'name': 'voidking','language': 'Python'}

data = urllib.parse.urlencode(values).encode(encoding='utf-8',errors='ignore')

headers = { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0' }

request = urllib.request.Request(url=url, data=data,headers=headers,method='GET')

response = urllib.request.urlopen(request)

buff = response.read()

html = buff.decode("utf8")

print(html)

使用Fiddler监听数据

我们想要查看一下,我们的请求是否真的携带了参数,所以需要使用fiddler。

打开fiddler之后,却意外发现,上面的代码会报错504,无论是baidu.py还是baidu2.py。

虽然python有报错,但是在fiddler中,我们可以看到请求信息,确实携带了参数。

经过查找资料,发现python以前版本的Request都不支持代理环境下访问https。但是,最近的版本应该支持了才对。那么,最简单的办法,就是换一个使用http协议的url来爬取,比如,换成http://www.csdn.net。结果,依然报错,只不过变成了400错误。

然而,然而,然而。。。神转折出现了!!!

当我把url换成http://www.csdn.net/后,请求成功!没错,就是在网址后面多加了一个斜杠/。同理,把http://www.baidu.com改成http://www.baidu.com/,请求也成功了!神奇!!!

添加处理器

import urllib.request

import http.cookiejar

# 创建cookie容器

cj = http.cookiejar.CookieJar()

# 创建opener

opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))

# 给urllib.request安装opener

urllib.request.install_opener(opener)

# 请求

request = urllib.request.Request('http://www.baidu.com/')

response = urllib.request.urlopen(request)

buff = response.read()

html = buff.decode("utf8")

print(html)

print(cj)

网页解析器(BeautifulSoup)

从网页中提取出有价值的数据和新的url列表。

解析器选择

为了实现解析器,可以选择使用正则表达式、html.parser、BeautifulSoup、lxml等,这里我们选择BeautifulSoup。

其中,正则表达式基于模糊匹配,而另外三种则是基于DOM结构化解析。

BeautifulSoup

安装测试

1、安装,在命令行下执行pip install beautifulsoup4。

2、测试

import bs4

print(bs4)

使用说明

基本用法

1、创建BeautifulSoup对象

import bs4

from bs4 import BeautifulSoup

# 根据html网页字符串创建BeautifulSoup对象

html_doc = """

The Dormouse's story

The Dormouse's story

Once upon a time there were three little sisters; and their names were

Elsie,

Lacie and

Tillie;

and they lived at the bottom of a well.

...

"""

soup = BeautifulSoup(html_doc)

print(soup.prettify())

2、访问节点

print(soup.title)

print(soup.title.name)

print(soup.title.string)

print(soup.title.parent.name)

print(soup.p)

print(soup.p['class'])

3、指定tag、class或id

print(soup.find_all('a'))

print(soup.find('a'))

print(soup.find(class_='title'))

print(soup.find(id="link3"))

print(soup.find('p',class_='title'))

4、从文档中找到所有标签的链接

for link in soup.find_all('a'):

    print(link.get('href'))

出现了警告,根据提示,我们在创建BeautifulSoup对象时,指定解析器即可。

soup = BeautifulSoup(html_doc,'html.parser')

5、从文档中获取所有文字内容

print(soup.get_text())

6、正则匹配

link_node = soup.find('a',href=re.compile(r"til"))

print(link_node)

后记

python爬虫基础知识,至此足够,接下来,在实战中学习更高级的知识。

你可能感兴趣的:(2020-12-19)