参考代码
结合自己的理解,添加注释。
数据集链接,下载后的数据在后缀名是data
的文件中,使用记事本打开,本次解题需要去掉第一行属性名称,再保存为txt格式文件。
import numpy as np
import pandas as pd
from sklearn import linear_model
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import cross_val_score
data_path = r'Transfusion.txt'
# 读取数据,将数据强制转换为int型
data = np.loadtxt(data_path, delimiter=',').astype(int)
# 前4列(属性值)赋值给X,第5列赋值给y(label值)
X = data[:, :4]
y = data[:, 4]
m, n = X.shape
# normalization,标准化,将数据减去均值,再除以方差,将数据平均数变成0,标准差变成1
X = (X - X.mean(0)) / X.std(0)
# np.arange返回一个有终点和起点的固定步长的排列(可理解为一个等差数组)
index = np.arange(m)
# shuffle打乱index排列
np.random.shuffle(index)
# 将数据按照打乱后的index重新排列
X = X[index]
y = y[index]
# 使用sklarn 中自带的api先
# k-10 cross validation
lr = linear_model.LogisticRegression(C=2) # C越大表示正则化程度越低
score = cross_val_score(lr, X, y, cv=10)
print(score.mean())
结果
0.7674234234234236
# 留一法leave-one-out
loo = LeaveOneOut()
accuracy = 0
for train, test in loo.split(X, y):
lr_ = linear_model.LogisticRegression(C=2)
X_train = X[train]
X_test = X[test]
y_train = y[train]
y_test = y[test]
lr_.fit(X_train, y_train)
accuracy += lr_.score(X_test, y_test)
print(accuracy / m)
结果
0.7687165775401069