数学建模学习(8):单目标和多目标规划

优化问题描述

数学建模学习(8):单目标和多目标规划_第1张图片

优化

优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值

数学建模学习(8):单目标和多目标规划_第2张图片

线性规划

线性规划是指目标函数和约束都是线性的情况

[x,fval]=linprog(f,A,b,Aeq,Beq,LB,UB)
x:求得最优情况下变量的解
fval:求得最优目标值
f:目标函数的系数(符号按最小值标准,若目标是求解机大值可以通过添加负号改成求极小值)
A:不等式约束的变量系数(符合按小于标准,如果是大于约束可通过加负号变成小于)
b:不等式约束的常量
Aeq:等式约束的变量系数Beq:等式约束的常量LB:变量的下限UB:变量的上限

数学建模学习(8):单目标和多目标规划_第3张图片

%% 线性规划
clc;clear;close all;
%目标函数/max 要改成min 的形式,max最大值可以系数加个负号的变成求min
f=[-1;-2;3];   

%不等约束  /化成标准形式   x1+x2<=
% -x1-x2+0*x3<=-3
%0*x1-x2-x3<=-3
A=[-1,-1,0;0,-1,-1];%左边特征矩阵
b=[-3;-3]; %右边

%等式约束
Aeq=[1,0,1];  
Beq=[4];

%变量约束,上限,下限
LB=zeros(3,1);
UB=2*ones(3,1);

%优化
[x,fval]=linprog(f,A,b,Aeq,Beq,LB,UB);
%
objstr=['目标函数最优值:',num2str(fval)];
disp(objstr)
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end

非线性规划

非线性规划是指目标函数和约束有非线性的情况

数学建模学习(8):单目标和多目标规划_第4张图片

 数学建模学习(8):单目标和多目标规划_第5张图片

%% 非线性规划1
clc;clear;close all;
%初始解,随意给个初始解
x0=zeros(3,1);

%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边

%描述线性 
%等式约束
Aeq=[];
Beq=[];

%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);

%
%优化求解 max 加负号  
fun = @(x)-x(1)^2+x(2)^2-x(2)*x(3);
%
nonlcon = @unitdisk;
[x,fval]=fmincon(fun,x0,A,b,Aeq,Beq,LB,UB,nonlcon);

objstr=['目标函数最优值:',num2str(-fval)];%num2str 数字变成字符
disp(objstr)
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end

function [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
%多个非线性约束的话,可以用[约束1;约束2];
ceq = [];
end

%%
%遇到较为复杂的目标函数
%可以写为函数的形式
fun = @obj;
function y = obj(x)
    y1 = x(1)^2+x(2)^2;
    y = sqrt(y1)+x(3)^3;
end
%%

多目标优化

数学建模学习(8):单目标和多目标规划_第6张图片

 数学建模学习(8):单目标和多目标规划_第7张图片

多目标求解的第一种方法:

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(3,1);

%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边

%等式约束
Aeq=[];
Beq=[];

%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);
%优化求解
%%
w1=0.5;w2=0.5;
fun = @(x)(-x(1)^2+x(2)^2-x(2)*x(3))*w1+(2*x(1)^2-x(2)^3+2*x(2)*x(3))*w2;


nonlcon = @unitdisk;
[x1,fval1]=fmincon(fun,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)
    xstr=['x',num2str(i),'的值为:',num2str(x1(i))];
    disp(xstr)
end

function [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
ceq = [];
end

多目标求解的第二种方法

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(3,1);

%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边

%等式约束
Aeq=[];
Beq=[];

%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);
%优化求解
%%
fun1 = @(x)-x(1)^2+x(2)^2-x(2)*x(3);
fun2 = @(x)2*x(1)^2-x(2)^3+2*x(2)*x(3);
%%
nonlcon = @unitdisk;
[x1,fval1]=fmincon(fun1,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)
    xstr=['x',num2str(i),'的值为:',num2str(x1(i))];
    disp(xstr)
end
[x2,fval2]=fmincon(fun2,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval2)];
disp(objstr)
for i=1:length(x2)
    xstr=['x',num2str(i),'的值为:',num2str(x2(i))];
    disp(xstr)
end
%% 多目标规划
goal=[fval1,fval2];
func = @(x)[-x(1)^2+x(2)^2-x(2)*x(3);2*x(1)^2-x(2)^3+2*x(2)*x(3)];
weight=[1,1];
[x,fival]=fgoalattain(func,x0,goal,weight,A,b,Aeq,Beq,LB,UB,nonlcon);
disp('在两个目标的优化结果为')
disp(func(x))
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end
%%
function [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
ceq = [];
end

数学建模学习(8):单目标和多目标规划_第8张图片

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(10,1);

%不等约束
A=[];%左边特征矩阵
b=[]; %右边

%等式约束
Aeq=[];
Beq=[];

%变量约束,上限,下限
LB=-1*ones(10,1);LB(1)=0;
UB=1*ones(10,1);
%优化求解
%%
fun1 = @obj1;
fun2 = @obj2;
%%
nonlcon = [];
[x1,fval1]=fmincon(fun1,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)
    xstr=['x',num2str(i),'的值为:',num2str(x1(i))];
    disp(xstr)
end
[x2,fval2]=fmincon(fun2,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval2)];
disp(objstr)
for i=1:length(x2)
    xstr=['x',num2str(i),'的值为:',num2str(x2(i))];
    disp(xstr)
end
%% 多目标规划
goal=[fval1,fval2];
func = @obj3;
weight=[1,1];
[x,fival]=fgoalattain(func,x0,goal,weight,A,b,Aeq,Beq,LB,UB,nonlcon);
disp('在两个目标的优化结果为')
disp(func(x))
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end
%%
function y1=obj1(x)
    [dim, num]  = size(x);
    tmp         = zeros(dim,num);
    tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;
    tmp1        = sum(tmp(3:2:dim,:));  % odd index
    tmp2        = sum(tmp(2:2:dim,:));  % even index
    y1      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);
%     y(2,:)      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
function y2=obj2(x)
    [dim, num]  = size(x);
    tmp         = zeros(dim,num);
    tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;
    tmp1        = sum(tmp(3:2:dim,:));  % odd index
    tmp2        = sum(tmp(2:2:dim,:));  % even index
%     y2      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);
    y2      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
function y=obj3(x)
    [dim, num]  = size(x);
    tmp         = zeros(dim,num);
    tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;
    tmp1        = sum(tmp(3:2:dim,:));  % odd index
    tmp2        = sum(tmp(2:2:dim,:));  % even index
    y(1,:)      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);
    y(2,:)      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
% function [c,ceq] = unitdisk(x)
% %c为不等式非线性约束
% %ceq为等式非线性约束
% c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
% ceq = [];
% end

你可能感兴趣的:(#,数学建模从入门到进阶,学习)