https://leetcode.cn/problems/longest-increasing-subsequence/
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
//动态规划 dp[i]为到i位置的最长严格递增子序列,结果输出dp[n-1]
vector<int> dp(nums.size(),1);//最小值为1
for(int i=1;i<dp.size();i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j])
dp[i] =max(dp[i],dp[j]+1);
}
}
int res = 0;
for(int i=0;i<dp.size();i++){
cout<< dp[i]<<",";
res = max(dp[i],res);
}
return res;
}
};
#include
#include
#include
#include
#include
using namespace std;
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
//动态规划 dp[i]为到i位置的最长严格递增子序列,结果输出dp[n-1]
vector<int> dp(nums.size(),1);//最小值为1
for(int i=1;i<dp.size();i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j])
dp[i] =max(dp[i],dp[j]+1);
else
dp[i] = 1;//前边没有更小的值了 应该去掉这个else部分
}
}
int res = 0;
for(int i=0;i<dp.size();i++){
cout<< dp[i]<<",";
res = max(dp[i],res);
}
return res;
}
};
int main()
{
vector<int> arr = {7,7,7,7,7,7,7};//{10,9,2,5,3,7,101,18};
unique_ptr<Solution> mysolo = unique_ptr<Solution>(new Solution());
int res = mysolo->lengthOfLIS(arr);
cout<<res<<endl;
return 0;
}