leetcode300. 最长递增子序列 子序列(不连续)

  • https://leetcode.cn/problems/longest-increasing-subsequence/

  • 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

  • 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1

题解

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
    //动态规划 dp[i]为到i位置的最长严格递增子序列,结果输出dp[n-1]
    vector<int> dp(nums.size(),1);//最小值为1
    for(int i=1;i<dp.size();i++){
        for(int j=0;j<i;j++){
            if(nums[i]>nums[j])
                dp[i] =max(dp[i],dp[j]+1);
        }
    }
    int res = 0;
    for(int i=0;i<dp.size();i++){
        cout<< dp[i]<<",";
        res = max(dp[i],res);
    }
    return res;
    }
};

错解

#include 
#include
#include
#include
#include
using namespace std;
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
    //动态规划 dp[i]为到i位置的最长严格递增子序列,结果输出dp[n-1]
    vector<int> dp(nums.size(),1);//最小值为1
    for(int i=1;i<dp.size();i++){
        for(int j=0;j<i;j++){
            if(nums[i]>nums[j])
                dp[i] =max(dp[i],dp[j]+1);
            else
                 dp[i] = 1;//前边没有更小的值了  应该去掉这个else部分
        }
    }
    int res = 0;
    for(int i=0;i<dp.size();i++){
        cout<< dp[i]<<",";
        res = max(dp[i],res);
    }
    return res;
    }
};

int main()
{

    vector<int> arr = {7,7,7,7,7,7,7};//{10,9,2,5,3,7,101,18};

    unique_ptr<Solution> mysolo = unique_ptr<Solution>(new Solution());
    int res = mysolo->lengthOfLIS(arr);
    cout<<res<<endl;
    return 0;
}


你可能感兴趣的:(笔记,算法)