本文主要参考《A Neural Probabilistic Language Model》这是一篇很重要的语言模型论文,发表于2003年。主要贡献如下:
模型的目标是学到一个概率函数,根据上下文预测下一个词的概率分布:
import os
import time
import pandas as pd
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
数据集来10+中文外卖评价数据集:
data = pd.read_csv('./dataset/waimai_10k.csv')
data.dropna(subset='review',inplace=True)
data['review_length'] = data.review.apply(lambda x:len(x))
data.sample(5)
label | review | review_length | |
---|---|---|---|
4545 | 0 | 从说马上送餐,到收到餐,时间特别久,给的送餐电话打不通! | 28 |
9855 | 0 | 韩餐做得像川菜,牛肉汤油得不能喝,量也比实体少很多,送餐时间久得太久了,1个半小时,唉。 | 44 |
5664 | 0 | 太糟了。等了两个小时,牛肉我吃的快吐了,再也不可能第二次 | 28 |
2323 | 1 | 很好吃,就是粥撒了点,等了一个多小时 | 18 |
8117 | 0 | 送餐员给我打电话比较粗鲁 | 12 |
统计信息:
data = data[data.review_length <= 50]
words = data.review.tolist()
chars = sorted(list(set(''.join(words))))
max_word_length = max(len(w) for w in words)
print(f"number of examples: {len(words)}")
print(f"max word length: {max_word_length}")
print(f"size of vocabulary: {len(chars)}")
number of examples: 10796
max word length: 50
size of vocabulary: 2272
test_set_size = min(1000, int(len(words) * 0.1))
rp = torch.randperm(len(words)).tolist()
train_words = [words[i] for i in rp[:-test_set_size]]
test_words = [words[i] for i in rp[-test_set_size:]]
print(f"split up the dataset into {len(train_words)} training examples and {len(test_words)} test examples")
split up the dataset into 9796 training examples and 1000 test examples
`class CharDataset(Dataset):
def __init__(self, words, chars, max_word_length, block_size=1):
self.words = words
self.chars = chars
self.max_word_length = max_word_length
self.block_size = block_size
self.char2i = {ch:i+1 for i,ch in enumerate(chars)}
self.i2char = {i:s for s,i in self.char2i.items()}
def __len__(self):
return len(self.words)
def contains(self, word):
return word in self.words
def get_vocab_size(self):
return len(self.chars) + 1
def get_output_length(self):
return self.max_word_length + 1
def encode(self, word):
ix = torch.tensor([self.char2i[w] for w in word], dtype=torch.long)
return ix
def decode(self, ix):
word = ''.join(self.i2char[i] for i in ix)
return word
def __getitem__(self, idx):
word = self.words[idx]
ix = self.encode(word)
x = torch.zeros(self.max_word_length + self.block_size, dtype=torch.long)
y = torch.zeros(self.max_word_length, dtype=torch.long)
x[self.block_size:len(ix)+self.block_size] = ix
y[:len(ix)] = ix
y[len(ix)+1:] = -1
if self.block_size > 1:
xs = []
for i in range(x.shape[0]-self.block_size):
xs.append(x[i:i+self.block_size].unsqueeze(0))
return torch.cat(xs), y
else:
return x, y`
class InfiniteDataLoader:
def __init__(self, dataset, **kwargs):
train_sampler = torch.utils.data.RandomSampler(dataset, replacement=True, num_samples=int(1e10))
self.train_loader = DataLoader(dataset, sampler=train_sampler, **kwargs)
self.data_iter = iter(self.train_loader)
def next(self):
try:
batch = next(self.data_iter)
except StopIteration:
self.data_iter = iter(self.train_loader)
batch = next(self.data_iter)
return batch
context_tokens → \to → embedding → \to → concate feature vector → \to → hidden layer → \to → output layer
@dataclass
class ModelConfig:
block_size: int = None
vocab_size: int = None
n_embed : int = None
n_hidden: int = None
`class MLP(nn.Module):
"""
takes the previous block_size tokens, encodes them with a lookup table,
concatenates the vectors and predicts the next token with an MLP.
Reference:
Bengio et al. 2003 https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
"""
def __init__(self, config):
super().__init__()
self.block_size = config.block_size
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size + 1, config.n_embed)
self.mlp = nn.Sequential(
nn.Linear(self.block_size * config.n_embed, config.n_hidden),
nn.Tanh(),
nn.Linear(config.n_hidden, self.vocab_size)
)
def get_block_size(self):
return self.block_size
def forward(self, idx, targets=None):
embs = []
for k in range(self.block_size):
tok_emb = self.wte(idx[:,:,k])
embs.append(tok_emb)
x = torch.cat(embs, -1)
logits = self.mlp(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss`
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10
* 11
* 12
* 13
* 14
* 15
* 16
* 17
* 18
* 19
* 20
* 21
* 22
* 23
* 24
* 25
* 26
* 27
* 28
* 29
* 30
* 31
* 32
* 33
* 34
* 35
* 36
* 37
* 38
* 39
* 40
* 41
* 42
* 43
* 44
@torch.inference_mode()
def evaluate(model, dataset, batch_size=10, max_batches=None):
model.eval()
loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0)
losses = []
for i, batch in enumerate(loader):
batch = [t.to('cuda') for t in batch]
X, Y = batch
logits, loss = model(X, Y)
losses.append(loss.item())
if max_batches is not None and i >= max_batches:
break
mean_loss = torch.tensor(losses).mean().item()
model.train()
return mean_loss
torch.manual_seed(seed=12345)
torch.cuda.manual_seed_all(seed=12345)
work_dir = "./Mlp_log"
os.makedirs(work_dir, exist_ok=True)
writer = SummaryWriter(log_dir=work_dir)
config = ModelConfig(vocab_size=train_dataset.get_vocab_size(),
block_size=7,
n_embed=64,
n_hidden=128)
train_dataset = CharDataset(train_words, chars, max_word_length, block_size=config.block_size)
test_dataset = CharDataset(test_words, chars, max_word_length, block_size=config.block_size)
train_dataset[0][0].shape, train_dataset[0][1].shape
(torch.Size([50, 7]), torch.Size([50]))
model = MLP(config)
model.to('cuda')
MLP(
(wte): Embedding(2274, 64)
(mlp): Sequential(
(0): Linear(in_features=448, out_features=128, bias=True)
(1): Tanh()
(2): Linear(in_features=128, out_features=2273, bias=True)
)
)
`optimizer = torch.optim.AdamW(model.parameters(), lr=5e-4, weight_decay=0.01, betas=(0.9, 0.99), eps=1e-8)
batch_loader = InfiniteDataLoader(train_dataset, batch_size=64, pin_memory=True, num_workers=4)
best_loss = None
step = 0
train_losses, test_losses = [],[]
while True:
t0 = time.time()
batch = batch_loader.next()
batch = [t.to('cuda') for t in batch]
X, Y = batch
logits, loss = model(X, Y)
model.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
torch.cuda.synchronize()
t1 = time.time()
if step % 1000 == 0:
print(f"step {step} | loss {loss.item():.4f} | step time {(t1-t0)*1000:.2f}ms")
if step > 0 and step % 100 == 0:
train_loss = evaluate(model, train_dataset, batch_size=100, max_batches=10)
test_loss = evaluate(model, test_dataset, batch_size=100, max_batches=10)
train_losses.append(train_loss)
test_losses.append(test_loss)
if best_loss is None or test_loss < best_loss:
out_path = os.path.join(work_dir, "model.pt")
print(f"test loss {test_loss} is the best so far, saving model to {out_path}")
torch.save(model.state_dict(), out_path)
best_loss = test_loss
step += 1
if step > 15100:
break`
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10
* 11
* 12
* 13
* 14
* 15
* 16
* 17
* 18
* 19
* 20
* 21
* 22
* 23
* 24
* 25
* 26
* 27
* 28
* 29
* 30
* 31
* 32
* 33
* 34
* 35
* 36
* 37
* 38
* 39
* 40
* 41
* 42
* 43
* 44
* 45
* 46
* 47
* 48
* 49
`step 0 | loss 7.7551 | step time 13.09ms
test loss 5.533482551574707 is the best so far, saving model to ./Mlp_log/model.pt
test loss 5.163593292236328 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.864410877227783 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.6439409255981445 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.482759475708008 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.350367069244385 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.250306129455566 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.16674280166626 is the best so far, saving model to ./Mlp_log/model.pt
test loss 4.0940842628479 is the best so far, saving model to ./Mlp_log/model.pt
.......................
step 6000 | loss 2.8038 | step time 6.44ms
step 7000 | loss 2.7815 | step time 11.88ms
step 8000 | loss 2.6511 | step time 5.93ms
step 9000 | loss 2.5898 | step time 5.00ms
step 10000 | loss 2.6600 | step time 6.12ms
step 11000 | loss 2.4634 | step time 5.94ms
step 12000 | loss 2.5373 | step time 7.75ms
step 13000 | loss 2.4050 | step time 6.29ms
step 14000 | loss 2.5434 | step time 7.77ms
step 15000 | loss 2.4084 | step time 7.10ms`
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10
* 11
* 12
* 13
* 14
* 15
* 16
* 17
* 18
* 19
* 20
* 21
`@torch.no_grad()
def generate(model, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None):
block_size = model.get_block_size()
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(2) <= block_size else idx[:, :,-block_size:]
logits, _ = model(idx_cond)
logits = logits[:,-1,:] / temperature
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
idx = torch.cat((idx, idx_next.unsqueeze(1)), dim=-1)
return idx`
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
* 1
* 2
* 3
* 4
* 5
* 6
* 7
* 8
* 9
* 10
* 11
* 12
* 13
* 14
* 15
* 16
* 17
* 18
* 19
* 20
* 21
* 22
* 23
* 24
* 25
def print_samples(num=13, block_size=3, top_k = None):
X_init = torch.zeros((num, 1, block_size), dtype=torch.long).to('cuda')
steps = train_dataset.get_output_length() - 1
X_samp = generate(model, X_init, steps, top_k=top_k, do_sample=True).to('cuda')
new_samples = []
for i in range(X_samp.size(0)):
row = X_samp[i, :, block_size:].tolist()[0]
crop_index = row.index(0) if 0 in row else len(row)
row = row[:crop_index]
word_samp = train_dataset.decode(row)
new_samples.append(word_samp)
return new_samples
不同上下文长度的生成效果
'送餐大叔叔风怎么第一次点的1迷就没有需减改进',
'送餐很快!菜品一般,送到都等到了都很在店里吃不出肥肉,第我地佩也不好意思了。第一次最爱付了凉面味道不',
'很不好进吧。。。。。这点一次都是卫生骑题!调菜油腻,真不太满意!',
'11点送到指定地形,不知道他由、奶茶类应盒子,幸好咸。。。',
'味道一般小份速度太难吃了。',
'快递小哥很贴心也吃不习惯。',
'非常慢。',
'为什么,4个盒子,反正订的有点干,送餐速度把面洒了不超值!很快!!!!!少菜分量不够吃了!味道很少餐',
'骑士剁疼倒还没给糖的',
'怎么吃,正好吃,便宜'
['味道不错,送餐大哥工,餐大哥应不错。',
'配送很不满意',
'土豆炒几次,一小时才没吃,幸太多',
'粥不好吃,没有病311小菜送到,吃完太差了',
'太咸了,很感谢到,对这次送餐员辛苦,服务很不好',
'真的很香菇沙,卷哪丝口气,无语了!',
'菜不怎么夹生若梦粥,小伙n丁也没有收到餐。。。',
'一点不脆1个多小时才送到。等了那个小时。',
'就是送的太慢。。。。一京酱肉丝卷太不点了了,大份小太爱,真心不难吃,最后我的平时面没有听说什么呢,就',
'慢能再提前的好,牛肉好吃而且感觉适合更能事,味道倒卷,送的也很快!']
['味道还不错,但是酱也没给,一点餐不差',
'都是肥肉,有差劲儿大的,也太给了,那么好给这么多~后超难吃~',
'少了一个半小时才吃到了',
'商务还菜很好的',
'慢慢了~以后!点他家极支付30元分钟,送过用了呢。',
'就是没送到就给送王一袋儿食吃起来掉了,有点辣,这油还这抄套!',
'很好吃,就是送餐师傅不错',
'包装好的牛肉卷糊弄错酱,重面太少了,肉不新鲜就吃了',
'味道不错,送得太慢...',
'非常好非常快递小哥,态度极差,一点也好,菜和粥洒了一袋软,以先订过哈哈哈哈']