GCD源码分析
dispatch_queue_create
-
dispatch_queue_create
队列创建方法
dispatch_queue_t
dispatch_queue_create(const char *label, dispatch_queue_attr_t attr)
{
return _dispatch_lane_create_with_target(label, attr,
DISPATCH_TARGET_QUEUE_DEFAULT, true);
}
-
_dispatch_lane_create_with_target
分析
return _dispatch_trace_queue_create(dq)._dq;
- 上面方法的代码还是比较长的,我们通过查看它的返回值方法
_dispatch_trace_queue_create(dq)._dq;
,_dispatch_trace_queue_create(dq)._dq;
调用了_dispatch_introspection_queue_create
方法
ispatch_queue_class_t
_dispatch_introspection_queue_create(dispatch_queue_t dq)
{
dispatch_queue_introspection_context_t dqic;
size_t sz = sizeof(struct dispatch_queue_introspection_context_s);
if (!_dispatch_introspection.debug_queue_inversions) {
sz = offsetof(struct dispatch_queue_introspection_context_s,
__dqic_no_queue_inversion);
}
dqic = _dispatch_calloc(1, sz);
dqic->dqic_queue._dq = dq;
if (_dispatch_introspection.debug_queue_inversions) {
LIST_INIT(&dqic->dqic_order_top_head);
LIST_INIT(&dqic->dqic_order_bottom_head);
}
dq->do_finalizer = dqic;
_dispatch_unfair_lock_lock(&_dispatch_introspection.queues_lock);
LIST_INSERT_HEAD(&_dispatch_introspection.queues, dqic, dqic_list);
_dispatch_unfair_lock_unlock(&_dispatch_introspection.queues_lock);
DISPATCH_INTROSPECTION_INTERPOSABLE_HOOK_CALLOUT(queue_create, dq);
if (DISPATCH_INTROSPECTION_HOOK_ENABLED(queue_create)) {
_dispatch_introspection_queue_create_hook(dq);
}
return upcast(dq)._dqu;
}
- 该方法是对dq的一些处理,回到开始的回调方法,发现他返回的是_dq,也就是说返回的就是dq,后面只是对dq的一些处理完善
- 再回到
_dispatch_lane_create_with_target
,找到dq的alloc和init
dispatch_lane_t dq = _dispatch_object_alloc(vtable,
sizeof(struct dispatch_lane_s)); // alloc
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
(dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0)); // init
- 通过参数
vtable
来确定队列的类型,DISPATCH_VTABLE
通过一系列的宏来确定vtable
的类型
const void *vtable;
dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
if (dqai.dqai_concurrent) {// 并行队列
// OS_dispatch_queue_concurrent_class
vtable = DISPATCH_VTABLE(queue_concurrent);
} else {
// OS_dispatch_ queue_serial_class
vtable = DISPATCH_VTABLE(queue_serial);
}
#define DISPATCH_VTABLE(name) DISPATCH_OBJC_CLASS(name)
#define DISPATCH_OBJC_CLASS(name) (&DISPATCH_CLASS_SYMBOL(name))
#if USE_OBJC
#define DISPATCH_CLASS_SYMBOL(name) OS_dispatch_##name##_class
- 查看
dpai
的赋值dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);
dispatch_queue_attr_info_t
_dispatch_queue_attr_to_info(dispatch_queue_attr_t dqa)
{
dispatch_queue_attr_info_t dqai = { };
if (!dqa) return dqai;
#if DISPATCH_VARIANT_STATIC
if (dqa == &_dispatch_queue_attr_concurrent) { // null 默认都是串行的队列
dqai.dqai_concurrent = true;
return dqai;
}
#endif
......
}
- 总结,我们在调用
dispatch_queue_create
创建队列,会传递两个参数,通过这两个参数来确定队列的名字,和队列串行或并行属性,然后alloc,init出一个队列对象,根据传递参数的不同,他们的类型也不一样。
dispatch_async
void
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)
{
dispatch_continuation_t dc = _dispatch_continuation_alloc();
uintptr_t dc_flags = DC_FLAG_CONSUME;
dispatch_qos_t qos;
// 任务包装器 - 接受 - 保存 - 函数式
// 保存 block
qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
_dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
- 任务包装方法
_dispatch_continuation_init
,copy任务,封装func
DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
dispatch_queue_class_t dqu, dispatch_block_t work,
dispatch_block_flags_t flags, uintptr_t dc_flags)
{
void *ctxt = _dispatch_Block_copy(work);
dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
if (unlikely(_dispatch_block_has_private_data(work))) {
dc->dc_flags = dc_flags;
dc->dc_ctxt = ctxt;
// will initialize all fields but requires dc_flags & dc_ctxt to be set
return _dispatch_continuation_init_slow(dc, dqu, flags);
}
dispatch_function_t func = _dispatch_Block_invoke(work);
if (dc_flags & DC_FLAG_CONSUME) {
func = _dispatch_call_block_and_release;
}
return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}
-
_dispatch_continuation_init_f
方法将封装好的func和任务赋值
DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init_f(dispatch_continuation_t dc,
dispatch_queue_class_t dqu, void *ctxt, dispatch_function_t f,
dispatch_block_flags_t flags, uintptr_t dc_flags)
{
pthread_priority_t pp = 0;
dc->dc_flags = dc_flags | DC_FLAG_ALLOCATED;
dc->dc_func = f;
dc->dc_ctxt = ctxt;
// in this context DISPATCH_BLOCK_HAS_PRIORITY means that the priority
// should not be propagated, only taken from the handler if it has one
if (!(flags & DISPATCH_BLOCK_HAS_PRIORITY)) {
pp = _dispatch_priority_propagate();
}
_dispatch_continuation_voucher_set(dc, flags);
return _dispatch_continuation_priority_set(dc, dqu, pp, flags);
}
- 继续执行
_dispatch_continuation_async
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
_dispatch_trace_item_push(dqu, dc);
}
#else
(void)dc_flags;
#endif
return dx_push(dqu._dq, dc, qos);
}
- 全局搜索
dx_push
,搜到#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)
- 继续搜索
dq_push
- 发现很多结果,因为我们是自定义并发队列,所以走的是
_dispatch_lane_concurrent_push
方法
-
_dispatch_lane_concurrent_push
方法里面会有dx_push
的递归,最终会调用到_dispatch_root_queue_push
方法
DISPATCH_NOINLINE
void
_dispatch_lane_concurrent_push(dispatch_lane_t dq, dispatch_object_t dou,
dispatch_qos_t qos)
{
// reserving non barrier width
// doesn't fail if only the ENQUEUED bit is set (unlike its barrier
// width equivalent), so we have to check that this thread hasn't
// enqueued anything ahead of this call or we can break ordering
if (dq->dq_items_tail == NULL &&
!_dispatch_object_is_waiter(dou) &&
!_dispatch_object_is_barrier(dou) &&
_dispatch_queue_try_acquire_async(dq)) {
return _dispatch_continuation_redirect_push(dq, dou, qos);
}
_dispatch_lane_push(dq, dou, qos);
}
- 继续往下执行
_dispatch_root_queue_push_inline
-->_dispatch_root_queue_poke
-->_dispatch_root_queue_poke_slow
-
_dispatch_root_queue_poke_slow
里面就有_dispatch_root_queues_init()
的初始化和关于线程的开辟等
......
_dispatch_root_queues_init();
......
do {
_dispatch_retain(dq); // released in _dispatch_worker_thread
while ((r = pthread_create(pthr, attr, _dispatch_worker_thread, dq))) {//创建线程
if (r != EAGAIN) {
(void)dispatch_assume_zero(r);
}
_dispatch_temporary_resource_shortage();
}
} while (--remaining);
......
-
_dispatch_root_queues_init
方法
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_root_queues_init(void)
{
dispatch_once_f(&_dispatch_root_queues_pred, NULL,
_dispatch_root_queues_init_once);
}
-
_dispatch_root_queues_init_once
方法里面就有cfg.workq_cb = _dispatch_worker_thread2;
,而在我们执行block中断点的堆栈中得到下面的流程
* thread #9, queue = 'com.apple.root.default-qos', stop reason = breakpoint 3.1
* frame #0: 0x00000001073a1cd7 GCD-Basic`__29-[ViewController viewDidLoad]_block_invoke(.block_descriptor=0x00000001073a4048) at ViewController.m:22:9
frame #1: 0x00000001076bfdd4 libdispatch.dylib`_dispatch_call_block_and_release + 12
frame #2: 0x00000001076c0d48 libdispatch.dylib`_dispatch_client_callout + 8
frame #3: 0x00000001076c31ef libdispatch.dylib`_dispatch_queue_override_invoke + 1022
frame #4: 0x00000001076d228c libdispatch.dylib`_dispatch_root_queue_drain + 351
frame #5: 0x00000001076d2b96 libdispatch.dylib`_dispatch_worker_thread2 + 132
frame #6: 0x00007fff524636b6 libsystem_pthread.dylib`_pthread_wqthread + 220
frame #7: 0x00007fff52462827 libsystem_pthread.dylib`start_wqthread + 15
dispatch_sync
DISPATCH_NOINLINE
void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
uintptr_t dc_flags = DC_FLAG_BLOCK;
if (unlikely(_dispatch_block_has_private_data(work))) {
return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
}
_dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}
-
_dispatch_sync_f
方法里面调用了_dispatch_sync_f_inline
static inline void
_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
dispatch_function_t func, uintptr_t dc_flags)
{
if (likely(dq->dq_width == 1)) {//串行队列
return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
}
if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
}
dispatch_lane_t dl = upcast(dq)._dl;
// Global concurrent queues and queues bound to non-dispatch threads
// always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {//死锁
return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);
}
if (unlikely(dq->do_targetq->do_targetq)) {
return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
}
_dispatch_introspection_sync_begin(dl);
_dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
_dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));
}
同步串行的处理
- 如果传过来的是串行队列,就会执行
_dispatch_barrier_sync_f
方法,往下继续调用_dispatch_barrier_sync_f_inline
static inline void
_dispatch_barrier_sync_f_inline(dispatch_queue_t dq, void *ctxt,
dispatch_function_t func, uintptr_t dc_flags)
{
dispatch_tid tid = _dispatch_tid_self();//获取线程id
if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
}
dispatch_lane_t dl = upcast(dq)._dl;
// The more correct thing to do would be to merge the qos of the thread
// that just acquired the barrier lock into the queue state.
//
// However this is too expensive for the fast path, so skip doing it.
// The chosen tradeoff is that if an enqueue on a lower priority thread
// contends with this fast path, this thread may receive a useless override.
//
// Global concurrent queues and queues bound to non-dispatch threads
// always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
if (unlikely(!_dispatch_queue_try_acquire_barrier_sync(dl, tid))) {//同步栅栏函数也会死锁
return _dispatch_sync_f_slow(dl, ctxt, func, DC_FLAG_BARRIER, dl,
DC_FLAG_BARRIER | dc_flags);
}
if (unlikely(dl->do_targetq->do_targetq)) {
return _dispatch_sync_recurse(dl, ctxt, func,
DC_FLAG_BARRIER | dc_flags);
}
_dispatch_introspection_sync_begin(dl);//同步开始的准备工作
_dispatch_lane_barrier_sync_invoke_and_complete(dl, ctxt, func
DISPATCH_TRACE_ARG(_dispatch_trace_item_sync_push_pop(
dq, ctxt, func, dc_flags | DC_FLAG_BARRIER)));
}
-
_dispatch_lane_barrier_sync_invoke_and_complete
方法,任务处理完成后会通知系统继续往下执行,因为同步会堵塞当前线程。
static void
_dispatch_lane_barrier_sync_invoke_and_complete(dispatch_lane_t dq,
void *ctxt, dispatch_function_t func DISPATCH_TRACE_ARG(void *dc))
{
_dispatch_sync_function_invoke_inline(dq, ctxt, func);//任务的处理
_dispatch_trace_item_complete(dc);//处理完成的回调
if (unlikely(dq->dq_items_tail || dq->dq_width > 1)) {
return _dispatch_lane_barrier_complete(dq, 0, 0);
}
// Presence of any of these bits requires more work that only
// _dispatch_*_barrier_complete() handles properly
//
// Note: testing for RECEIVED_OVERRIDE or RECEIVED_SYNC_WAIT without
// checking the role is sloppy, but is a super fast check, and neither of
// these bits should be set if the lock was never contended/discovered.
const uint64_t fail_unlock_mask = DISPATCH_QUEUE_SUSPEND_BITS_MASK |
DISPATCH_QUEUE_ENQUEUED | DISPATCH_QUEUE_DIRTY |
DISPATCH_QUEUE_RECEIVED_OVERRIDE | DISPATCH_QUEUE_SYNC_TRANSFER |
DISPATCH_QUEUE_RECEIVED_SYNC_WAIT;
uint64_t old_state, new_state;
// 同步任务执行完成通知系统往下执行
// similar to _dispatch_queue_drain_try_unlock
os_atomic_rmw_loop2o(dq, dq_state, old_state, new_state, release, {
new_state = old_state - DISPATCH_QUEUE_SERIAL_DRAIN_OWNED;
new_state &= ~DISPATCH_QUEUE_DRAIN_UNLOCK_MASK;
new_state &= ~DISPATCH_QUEUE_MAX_QOS_MASK;
if (unlikely(old_state & fail_unlock_mask)) {
os_atomic_rmw_loop_give_up({
return _dispatch_lane_barrier_complete(dq, 0, 0);
});
}
});
if (_dq_state_is_base_wlh(old_state)) {
_dispatch_event_loop_assert_not_owned((dispatch_wlh_t)dq);
}
}
- 任务的处理
_dispatch_sync_function_invoke_inline
static inline void
_dispatch_sync_function_invoke_inline(dispatch_queue_class_t dq, void *ctxt,
dispatch_function_t func)
{
dispatch_thread_frame_s dtf;
_dispatch_thread_frame_push(&dtf, dq);
_dispatch_client_callout(ctxt, func);
_dispatch_perfmon_workitem_inc();
_dispatch_thread_frame_pop(&dtf);
}
同步死锁
static void
_dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt,
dispatch_function_t func, uintptr_t top_dc_flags,
dispatch_queue_class_t dqu, uintptr_t dc_flags)
{
dispatch_queue_t top_dq = top_dqu._dq;
dispatch_queue_t dq = dqu._dq;
if (unlikely(!dq->do_targetq)) {
return _dispatch_sync_function_invoke(dq, ctxt, func);
}
pthread_priority_t pp = _dispatch_get_priority();
struct dispatch_sync_context_s dsc = {
.dc_flags = DC_FLAG_SYNC_WAITER | dc_flags,
.dc_func = _dispatch_async_and_wait_invoke,
.dc_ctxt = &dsc,
.dc_other = top_dq,
.dc_priority = pp | _PTHREAD_PRIORITY_ENFORCE_FLAG,
.dc_voucher = _voucher_get(),
.dsc_func = func,
.dsc_ctxt = ctxt,
.dsc_waiter = _dispatch_tid_self(),
};
_dispatch_trace_item_push(top_dq, &dsc);//将任务加入到队列
__DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);
if (dsc.dsc_func == NULL) {
// dsc_func being cleared means that the block ran on another thread ie.
// case (2) as listed in _dispatch_async_and_wait_f_slow.
dispatch_queue_t stop_dq = dsc.dc_other;
return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
}
_dispatch_introspection_sync_begin(top_dq);
_dispatch_trace_item_pop(top_dq, &dsc);
_dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
DISPATCH_TRACE_ARG(&dsc));
}
- 将任务添加到队列之后会执行
__DISPATCH_WAIT_FOR_QUEUE__
static void
__DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq)
{
uint64_t dq_state = _dispatch_wait_prepare(dq);
if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
"dispatch_sync called on queue "
"already owned by current thread");
}
// Blocks submitted to the main thread MUST run on the main thread, and
// dispatch_async_and_wait also executes on the remote context rather than
// the current thread.
//
// For both these cases we need to save the frame linkage for the sake of
// _dispatch_async_and_wait_invoke
_dispatch_thread_frame_save_state(&dsc->dsc_dtf);
if (_dq_state_is_suspended(dq_state) ||
_dq_state_is_base_anon(dq_state)) {
dsc->dc_data = DISPATCH_WLH_ANON;
} else if (_dq_state_is_base_wlh(dq_state)) {
dsc->dc_data = (dispatch_wlh_t)dq;
} else {
_dispatch_wait_compute_wlh(upcast(dq)._dl, dsc);
}
if (dsc->dc_data == DISPATCH_WLH_ANON) {
dsc->dsc_override_qos_floor = dsc->dsc_override_qos =
(uint8_t)_dispatch_get_basepri_override_qos_floor();
_dispatch_thread_event_init(&dsc->dsc_event);
}
dx_push(dq, dsc, _dispatch_qos_from_pp(dsc->dc_priority));
_dispatch_trace_runtime_event(sync_wait, dq, 0);
if (dsc->dc_data == DISPATCH_WLH_ANON) {
_dispatch_thread_event_wait(&dsc->dsc_event); // acquire
} else {
_dispatch_event_loop_wait_for_ownership(dsc);
}
if (dsc->dc_data == DISPATCH_WLH_ANON) {
_dispatch_thread_event_destroy(&dsc->dsc_event);
// If _dispatch_sync_waiter_wake() gave this thread an override,
// ensure that the root queue sees it.
if (dsc->dsc_override_qos > dsc->dsc_override_qos_floor) {
_dispatch_set_basepri_override_qos(dsc->dsc_override_qos);
}
}
}
-
_dq_state_drain_locked_by
-->_dispatch_lock_is_locked_by
static inline bool
_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
// equivalent to _dispatch_lock_owner(lock_value) == tid
return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}
- 如果
lock_value
和tid
相同就会执行DISPATCH_CLIENT_CRASH((uintptr_t)dq_state, "dispatch_sync called on queue " "already owned by current thread");
,也就是我们所说的死锁
同步并发的处理
static void
_dispatch_sync_invoke_and_complete(dispatch_lane_t dq, void *ctxt,
dispatch_function_t func DISPATCH_TRACE_ARG(void *dc))
{
_dispatch_sync_function_invoke_inline(dq, ctxt, func);//任务的处理
_dispatch_trace_item_complete(dc);
_dispatch_lane_non_barrier_complete(dq, 0);
}
- 和上文同步串行的处理差不多,任务处理完后通知系统继续往下执行。
单列
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
});
void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}
void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
dispatch_once_gate_t l = (dispatch_once_gate_t)val;
#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
if (likely(v == DLOCK_ONCE_DONE)) {
return;
}
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
if (likely(DISPATCH_ONCE_IS_GEN(v))) {
return _dispatch_once_mark_done_if_quiesced(l, v);
}
#endif
#endif
if (_dispatch_once_gate_tryenter(l)) {
return _dispatch_once_callout(l, ctxt, func);
}
return _dispatch_once_wait(l);
}
- 外面传入两个参数,一个静态onceToken保证唯一性,还有一个block,将onceToken包装成一个
dispatch_once_gate_t l
变量,用来记录单列的状态,如果已经是DLOCK_ONCE_DONE
就表示已经执行过一次了,就会直接返回,正常情况下是会走_dispatch_once_callout
。进入_dispatch_once_callout
之前还有个if判断_dispatch_once_gate_tryenter
(保证执行一次)。
static inline bool
_dispatch_once_gate_tryenter(dispatch_once_gate_t l)
{
return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
(uintptr_t)_dispatch_lock_value_for_self(), relaxed);
}
static void
_dispatch_once_callout(dispatch_once_gate_t l, void *ctxt,
dispatch_function_t func)
{
_dispatch_client_callout(ctxt, func);//执行block
_dispatch_once_gate_broadcast(l);
}
-
_dispatch_once_gate_broadcast
会将l
的状态改变,保证只执行一次
static inline void
_dispatch_once_gate_broadcast(dispatch_once_gate_t l)
{
dispatch_lock value_self = _dispatch_lock_value_for_self();
uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
v = _dispatch_once_mark_quiescing(l);
#else
v = _dispatch_once_mark_done(l);
#endif
if (likely((dispatch_lock)v == value_self)) return;
_dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}
dispatch_semaphore_t信号量
-
dispatch_semaphore_t
信号量为1可以当锁使用,可以控制GCD的最大并发量,信号量的使用需要dispatch_semaphore_wait
和dispatch_semaphore_signal
配合使用。
dispatch_semaphore_wait
-
dispatch_semaphore_wait
的底层实现
long
dispatch_semaphore_signal(dispatch_semaphore_t dsema)
{
long value = os_atomic_inc2o(dsema, dsema_value, release);
if (likely(value > 0)) {
return 0;
}
if (unlikely(value == LONG_MIN)) {
DISPATCH_CLIENT_CRASH(value,
"Unbalanced call to dispatch_semaphore_signal()");
}
return _dispatch_semaphore_signal_slow(dsema);
}
-
os_atomic_inc2o
其实就是一个信号量+1的操作,如果value > 0,直接返回0,可以继续使用,否则会进入一个长等待直到信号量的值>0。
#define os_atomic_inc2o(p, f, m) \
os_atomic_add2o(p, f, 1, m)
#define os_atomic_add2o(p, f, v, m) \
os_atomic_add(&(p)->f, (v), m)
#define os_atomic_add(p, v, m) \
_os_atomic_c11_op((p), (v), m, add, +)
#define _os_atomic_c11_op(p, v, m, o, op) \
({ _os_atomic_basetypeof(p) _v = (v), _r = \
atomic_fetch_##o##_explicit(_os_atomic_c11_atomic(p), _v, \
memory_order_##m); (__typeof__(_r))(_r op _v); })
//_r = atomic_fetch_add_explicit(dsema-> dsema_value,1);
dispatch_semaphore_wait
-
dispatch_semaphore_wait
的底层实现
long
dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
long value = os_atomic_dec2o(dsema, dsema_value, acquire);
if (likely(value >= 0)) {
return 0;
}
return _dispatch_semaphore_wait_slow(dsema, timeout);
}
-
os_atomic_dec2o
其实就是一个信号量-1的操作,如果value >= 0,直接返回0,继续往下执行,否则就会执行_dispatch_semaphore_signal_slow
等待,直到信号量唤醒或者超时
dispatch_group
dispatch_group_create
- 调度组的创建
dispatch_group_create
,然后会调用_dispatch_group_create_with_count
方法
// 创建一个group对象,并进行一些初始化处理
static inline dispatch_group_t
_dispatch_group_create_with_count(uint32_t n)
{
dispatch_group_t dg = _dispatch_object_alloc(DISPATCH_VTABLE(group),
sizeof(struct dispatch_group_s));
dg->do_next = DISPATCH_OBJECT_LISTLESS;
dg->do_targetq = _dispatch_get_default_queue(false);
if (n) {
os_atomic_store2o(dg, dg_bits,
(uint32_t)-n * DISPATCH_GROUP_VALUE_INTERVAL, relaxed);
os_atomic_store2o(dg, do_ref_cnt, 1, relaxed); //
}
return dg;
}
dispatch_group_t
dispatch_group_create(void)
{
return _dispatch_group_create_with_count(0);
}
dispatch_group_enter
-
dispatch_group_enter
源码实现如下,os_atomic_sub_orig2o
对dg_bits
-1操作
void
dispatch_group_enter(dispatch_group_t dg)
{
// The value is decremented on a 32bits wide atomic so that the carry
// for the 0 -> -1 transition is not propagated to the upper 32bits.
uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits,
DISPATCH_GROUP_VALUE_INTERVAL, acquire);
uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
if (unlikely(old_value == 0)) {
_dispatch_retain(dg); //
}
if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {
DISPATCH_CLIENT_CRASH(old_bits,
"Too many nested calls to dispatch_group_enter()");
}
}
dispatch_group_leave
-
dispatch_group_leave
源码实现如下,os_atomic_add_orig2o
对dg_bits
+1操作,如果 +1 之后还等于 0 那么说明之前没有调用dispatch_group_enter,就里会 crash,当然这里核心在 _dispatch_group_wake
void
dispatch_group_leave(dispatch_group_t dg)
{
// The value is incremented on a 64bits wide atomic so that the carry for
// the -1 -> 0 transition increments the generation atomically.
uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state,
DISPATCH_GROUP_VALUE_INTERVAL, release);
uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);
if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
old_state += DISPATCH_GROUP_VALUE_INTERVAL;
do {
new_state = old_state;
if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
} else {
// If the group was entered again since the atomic_add above,
// we can't clear the waiters bit anymore as we don't know for
// which generation the waiters are for
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
}
if (old_state == new_state) break;
} while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state,
old_state, new_state, &old_state, relaxed)));
return _dispatch_group_wake(dg, old_state, true);
}
if (unlikely(old_value == 0)) {
DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
"Unbalanced call to dispatch_group_leave()");
}
}
-
_dispatch_group_wake
方法,重点研究_dispatch_continuation_async
DISPATCH_NOINLINE
static void
_dispatch_group_wake(dispatch_group_t dg, uint64_t dg_state, bool needs_release)
{
uint16_t refs = needs_release ? 1 : 0; //
if (dg_state & DISPATCH_GROUP_HAS_NOTIFS) {
dispatch_continuation_t dc, next_dc, tail;
// Snapshot before anything is notified/woken
dc = os_mpsc_capture_snapshot(os_mpsc(dg, dg_notify), &tail);
do {
dispatch_queue_t dsn_queue = (dispatch_queue_t)dc->dc_data;
next_dc = os_mpsc_pop_snapshot_head(dc, tail, do_next);
_dispatch_continuation_async(dsn_queue, dc,
_dispatch_qos_from_pp(dc->dc_priority), dc->dc_flags);
_dispatch_release(dsn_queue);
} while ((dc = next_dc));
refs++;
}
if (dg_state & DISPATCH_GROUP_HAS_WAITERS) {
_dispatch_wake_by_address(&dg->dg_gen);
}
if (refs) _dispatch_release_n(dg, refs);
}
-
_dispatch_continuation_async
方法,发现和上文异步函数的执行流程很相似
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
_dispatch_trace_item_push(dqu, dc);
}
#else
(void)dc_flags;
#endif
return dx_push(dqu._dq, dc, qos);
}
dispatch_group_async
-
dispatch_group_async
的效果相当于dispatch_group_enter
+dispatch_group_leave
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_continuation_t dc = _dispatch_continuation_alloc();
uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_GROUP_ASYNC;
dispatch_qos_t qos;
qos = _dispatch_continuation_init(dc, dq, db, 0, dc_flags);
_dispatch_continuation_group_async(dg, dq, dc, qos);
}
static inline void
_dispatch_continuation_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_continuation_t dc, dispatch_qos_t qos)
{
dispatch_group_enter(dg);
dc->dc_data = dg;
_dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
- 通过在block断点处打印bt,观察进入到
_dispatch_continuation_with_group_invoke
里面找到了dispatch_group_leave
的执行
frame #1: 0x000000010a1f5dd4 libdispatch.dylib`_dispatch_call_block_and_release + 12
frame #2: 0x000000010a1f6d48 libdispatch.dylib`_dispatch_client_callout + 8
frame #3: 0x000000010a1f979a libdispatch.dylib`_dispatch_continuation_pop + 776
frame #4: 0x000000010a1f8ac5 libdispatch.dylib`_dispatch_async_redirect_invoke + 849
frame #5: 0x000000010a20828c libdispatch.dylib`_dispatch_root_queue_drain + 351
frame #6: 0x000000010a208b96 libdispatch.dylib`_dispatch_worker_thread2 + 132
frame #7: 0x00007fff524636b6 libsystem_pthread.dylib`_pthread_wqthread + 220
frame #8: 0x00007fff52462827 libsystem_pthread.dylib`start_wqthread + 15
// 通过查找`_dispatch_client_callout `的调用
static inline void
_dispatch_continuation_with_group_invoke(dispatch_continuation_t dc)
{
struct dispatch_object_s *dou = dc->dc_data;
unsigned long type = dx_type(dou);
if (type == DISPATCH_GROUP_TYPE) {
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
_dispatch_trace_item_complete(dc);
dispatch_group_leave((dispatch_group_t)dou);
} else {
DISPATCH_INTERNAL_CRASH(dx_type(dou), "Unexpected object type");
}
}
dispatch_group_notify
static inline void
_dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_continuation_t dsn)
{
uint64_t old_state, new_state;
dispatch_continuation_t prev;
dsn->dc_data = dq;
_dispatch_retain(dq);
prev = os_mpsc_push_update_tail(os_mpsc(dg, dg_notify), dsn, do_next);
if (os_mpsc_push_was_empty(prev)) _dispatch_retain(dg);
os_mpsc_push_update_prev(os_mpsc(dg, dg_notify), prev, dsn, do_next);
if (os_mpsc_push_was_empty(prev)) {
os_atomic_rmw_loop2o(dg, dg_state, old_state, new_state, release, {
new_state = old_state | DISPATCH_GROUP_HAS_NOTIFS;
if ((uint32_t)old_state == 0) {
os_atomic_rmw_loop_give_up({
return _dispatch_group_wake(dg, new_state, false);
});
}
});
}
}
- 发现
old_state == 0
就会执行dispatch_group_notify
block的内容