关于冯诺依曼,必须强调几点:
对冯诺依曼的理解,不能停留在概念上,要深入到对软件数据流理解上,请解释,从你登录上qq开始和某位朋友聊天开始,数据的流动过程。从你打开窗口,开始给他发消息,到他的到消息之后的数据流动过程。如果是在qq上发送文件呢?
任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。笼统的理解,操作系统包括:
在整个计算机软硬件架构中,操作系统的定位是:一款纯正的“搞管理”的软件
计算机管理硬件
1. 描述起来,用struct结构体
2. 组织起来,用链表或其他高效的数据结构
在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用。
系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发。
可以在内核源代码里找到它。所有运行在系统里的进程都以task_struct链表的形式存在内核里。
进程的信息可以通过/proc 系统文件夹查看
大多数进程信息同样可以使用top和ps这些用户级工具来获取
#include
#include
#include
int main()
{
while(1){
sleep(1);
}
return 0;
}
#include
#include
#include
int main()
{
printf("pid: %d\n", getpid());
printf("ppid: %d\n", getppid());
return 0;
}
#include
#include
#include
int main()
{
int ret = fork();
printf("hello proc : %d!, ret: %d\n", getpid(), ret);
sleep(1);
return 0;
}
fork 之后通常要用if 进行分流
#include
#include
#include
int main()
{
int ret = fork();
if(ret < 0){
perror("fork");
return 1;
}
else if(ret == 0){ //child
printf("I am child : %d!, ret: %d\n", getpid(), ret);
}else{ //father
printf("I am father : %d!, ret: %d\n", getpid(), ret);
}
sleep(1);
return 0;
}
为了弄明白正在运行的进程是什么意思,我们需要知道进程的不同状态。一个进程可以有几个状态(在Linux内核里,进程有时候也叫做任务)。下面的状态在kernel源代码里定义
/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char * const task_state_array[] = {
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};
ps aux / ps axj 命令
来一个创建维持30秒的僵死进程例子:
#include
#include
int main()
{
pid_t id = fork();
if (id < 0) {
perror("fork");
return 1;
}
else if (id > 0) { //parent
printf("parent[%d] is sleeping...\n", getpid());
sleep(30);
}
else {
printf("child[%d] is begin Z...\n", getpid());
sleep(5);
exit(EXIT_SUCCESS);
}
return 0;
}
编译并在另一个终端下启动监控
开始测试
看到结果
#include
#include
#include
int main()
{
pid_t id = fork();
if (id < 0) {
perror("fork");
return 1;
}
else if (id == 0) {//child
printf("I am child, pid : %d\n", getpid());
sleep(10);
}
else {//parent
printf("I am parent, pid: %d\n", getpid());
sleep(3);
exit(0);
}
return 0;
}
cpu资源分配的先后顺序,就是指进程的优先权(priority)。
优先权高的进程有优先执行权利。配置进程优先权对多任务环境的linux很有用,可以改善系统性能。还可以把进程运行到指定的CPU上,这样一来,把不重要的进程安排到某个CPU,可以大大改善系统整体性能。
在linux或者unix系统中,用ps –l命令则会类似输出以下几个内容:
UID : 代表执行者的身份
PID : 代表这个进程的代号
PPID :代表这个进程是由哪个进程发展衍生而来的,亦即父进程的代号
PRI :代表这个进程可被执行的优先级,其值越小越早被执行
NI :代表这个进程的nice值
环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数
如:我们在编写C/C++代码的时候,在链接的时候,从来不知道我们的所链接的动态静态库在哪里,但是照样可以链接成功,生成可执行程序,原因就是有相关环境变量帮助编译器进行查找。
环境变量通常具有某些特殊用途,还有在系统当中通常具有全局特性
echo $NAME //NAME:你的环境变量名称
1. 创建hello.c文件
#include
int main()
{
printf("hello world!\n");
return 0;
}
2. 对比./hello执行和之间hello执行
3. 为什么有些指令可以直接执行,不需要带路径,而我们的二进制程序需要带路径才能执行?
4. 将我们的程序所在路径加入环境变量PATH当中, export PATH=$PATH:hello程序所在路径
5. 对比测试
6. 还有什么方法可以不用带路径,直接就可以运行呢?
1. 用root和普通用户,分别执行echo $HOME ,对比差异
. 执行cd ~; pwd ,对应~ 和 HOME 的关系
1. echo: 显示某个环境变量值
2. export: 设置一个新的环境变量
3. env: 显示所有环境变量
4. unset: 清除环境变量
5. set: 显示本地定义的shell变量和环境变量
每个程序都会收到一张环境表,环境表是一个字符指针数组,每个指针指向一个以’\0’结尾的环境字符串
#include
int main(int argc, char* argv[], char* env[])
{
int i = 0;
for (; env[i]; i++) {
printf("%s\n", env[i]);
}
return 0;
}
#include
int main(int argc, char* argv[])
{
extern char** environ;
int i = 0;
for (; environ[i]; i++) {
printf("%s\n", environ[i]);
}
return 0;
}
libc中定义的全局变量environ指向环境变量表,environ没有包含在任何头文件中,所以在使用时 要用extern声明。
#include
#include
int main()
{
printf("%s\n", getenv("PATH"));
return 0;
}
常用getenv和putenv函数来访问特定的环境变量。
环境变量通常具有全局属性,可以被子进程继承下去
#include
#include
int main()
{
char* env = getenv("MYENV");
if (env) {
printf("%s\n", env);
}
return 0;
}
#include
#include
#include
int g_val = 0;
int main()
{
pid_t id = fork();
if (id < 0) {
perror("fork");
return 0;
}
else if (id == 0) { //childprintf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);
}
else { //parent
printf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);
}
sleep(1);
return 0;
}
输出
//与环境相关,观察现象即可
parent[2995]: 0 : 0x80497d8
child[2996]: 0 : 0x80497d8
我们发现,输出出来的变量值和地址是一模一样的,很好理解呀,因为子进程按照父进程为模版,父子并没有对变量进行进行任何修改。可是将代码稍加改动:
#include
#include
#include
int g_val = 0;
int main()
{
pid_t id = fork();
if (id < 0) {
perror("fork");
return 0;
}
else if (id == 0) { //child,子进程肯定先跑完,也就是子进程先修改,完成之后,父进程再读取
g_val = 100;
printf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);
}
else { //parent
sleep(3);
printf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);
}
sleep(1);
return 0;
}
输出结果:
//与环境相关,观察现象即可
child[3046]: 100 : 0x80497e8
parent[3045]: 0 : 0x80497e8
我们发现,父子进程,输出地址是一致的,但是变量内容不一样!能得出如下结论:
所以之前说‘程序的地址空间’是不准确的,准确的应该说成进程地址空间,那该如何理解呢?看图:
分页&虚拟地址空间
同一个变量,地址相同,其实是虚拟地址相同,内容不同其实是被映射到了不同的物理地址!
如果有多个CPU就要考虑进程个数的负载均衡问题
时间片还没有结束的所有进程都按照优先级放在该队列
nr_active: 总共有多少个运行状态的进程
queue[140]: 一个元素就是一个进程队列,相同优先级的进程按照FIFO规则进行排队调度,所以,数组下标就是优先级!
从该结构中,选择一个最合适的进程,过程是怎么的呢?
1. 从0下表开始遍历queue[140]
2. 找到第一个非空队列,该队列必定为优先级最高的队列
3. 拿到选中队列的第一个进程,开始运行,调度完成!
4. 遍历queue[140]时间复杂度是常数!但还是太低效了!
bitmap[5]:一共140个优先级,一共140个进程队列,为了提高查找非空队列的效率,就可以用5*32个比特位表示队列是否为空,这样,便可以大大提高查找效率!
总结:
在系统当中查找一个最合适调度的进程的时间复杂度是一个常数,不随着进程增多而导致时间成本增加,我们称之为进程调度O(1)算法!