最近项目需求做ML,我对这个又不是很熟只有一点一点学习,其中包括Data的预处理,会用到操作csv,顺便总结下.
pip install pandas
我使用的demo csv如下
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
print(data)
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
print(data.describe())
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
print(data.head(5))
其中loc 与 iloc的区别可以看这篇blog https://blog.csdn.net/u014712482/article/details/85080864
简而言之,loc的参数是具体的列名字行名或者范围,而iloc是行的index与列的index或者范围
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
print(data.loc[2:5])
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
print(data.iloc[2:5,0:3])
df=file.loc[(file['cs-uri'] == url) & (file['cs-method'] == method)]
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
data.loc[:,'CO2']=28
data.to_csv("./targetCsv.csv")
import pandas as pd
path="./cars.csv"
with open(path)as file:
data=pd.read_csv(file)
data.loc[3,'Car']='Test Write'
data.to_csv("./targetCsv.csv")
import pandas as pd
df=pd.DataFrame({'Yes': [50, 21] , 'No': [131, 2]}, index = ['A','B'])
df.to_csv('./targetCsv.csv')
import pandas as pd
df=pd.DataFrame([[35, 21], [41, 34]],
columns=['Apples', 'Bananas'],
index=['2017 Sales', '2018 Sales'])
df.to_csv('./targetCsv.csv')
import pandas as pd
data = pd.read_excel(filepath,index=False)
操作方式和csv差不多就不具体演示了