思路:
规律题,
#include
using namespace std;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
typedef vector<int> vi;
typedef long long ll;
typedef pair<int, int> pii;
typedef double db;
int main()
{
int t; cin >> t;
while (t --)
{
int n, m; cin >> n >> m;
if(n == 1 || m == 1) puts("YES");
else if(n == 2 && m == 2) puts("YES");
else puts("NO");
}
return 0;
}
思路:
观察可以发现第 p p p高的金字塔和第 p − 1 p-1 p−1高的金字塔有这个关系 s [ p ] = s [ p − 1 ] + 3 ∗ p − 1 s[p]=s[p-1]+3*p-1 s[p]=s[p−1]+3∗p−1。我们可以先预处理出高度为p的金字塔所需的字牌数。
对于n张牌,可以二分算出所需牌数小于 n n n的最大高度。然后一直循环直到 n < 2 n < 2 n<2即可
代码:
#include
using namespace std;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
typedef vector<int> vi;
typedef long long ll;
typedef pair<int, int> pii;
typedef double db;
const int N = 1e5 + 5;
ll s[N];
int main()
{
s[1] = 2;
int p;
for (p = 2; ; ++ p)
{
s[p] = s[p - 1] + 3 * p - 1;
if(s[p] >= 1e9) break;
}
int t; cin >> t;
while (t --)
{
int n; cin >> n;
int ct = 0;
while (n >= s[1])
{
int l = 1, r = p;
while (l < r)
{
int mid = (l + r + 1) >> 1;
if(s[mid] <= n) l = mid; else r = mid - 1;
}
ct ++;
n -= s[l];
}
cout << ct << endl;
}
return 0;
}
思路:
读半天题,没懂啥意思,T~T,
代码:
#include
using namespace std;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
typedef vector<int> vi;
typedef long long ll;
typedef pair<int, int> pii;
typedef double db;
const int N = 2e5 + 5;
bool v[N];
int main()
{
int t; scanf("%d", &t);
while (t --)
{
int n; scanf("%d", &n);
for (int i = 0; i <= n; ++ i) v[i] = 0;
for (int i = 0; i < n; ++ i)
{
int j; scanf("%d", &j);
v[((i + j ) % n + n) % n] = 1;
}
int ok = 1;
for (int i = 0; i < n; ++ i)
if(!v[i])
{
ok = 0;
break;
}
if(ok) puts("YES");
else puts("NO");
}
return 0;
}
思路:
分类讨论
#include
using namespace std;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
typedef vector<int> vi;
typedef queue<int> qi;
typedef long long ll;
typedef pair<int, int> pii;
typedef double db;
const int N = 1e3 + 5;
const int dir[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};
bool r[N], c[N], rr[N], cc[N], v[N][N];
char s[N][N];
int rf[N][2], cf[N][2];
int n, m;
void dfs(int x, int y)
{
v[x][y] = 1;
for (int i = 0; i < 4; ++ i)
{
int tx = x + dir[i][0], ty = y + dir[i][1];
if(tx >= 1 && tx <= n && ty >= 1 && ty <= m && s[tx][ty] == '#' && !v[tx][ty])
dfs(tx, ty);
}
}
int solve()
{
int res = 0;
for (int i = 1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j)
{
if(!v[i][j] && s[i][j] == '#')
{
dfs(i, j);
res ++;
}
}
return res;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; ++ i) cin >> s[i] + 1;
for (int i = 1; i <= n; ++ i) rf[i][0] = 0x3f3f3f3f;
for (int i = 1; i <= m; ++ i) cf[i][0] = 0x3f3f3f3f;
for (int i = 1; i <= n; ++ i)
for (int j = 1; j <= m; ++ j)
{
if(s[i][j] == '#')
{
r[i] = c[j] = 1;
rf[i][0] = min(rf[i][0], j);
rf[i][1] = max(rf[i][1], j);
cf[j][0] = min(cf[j][0], i);
cf[j][1] = max(cf[j][1], i);
}
}
int ok = 1 ;
for (int i = 1; i <= n; ++ i)
{
for (int j = 1; j <= m; ++ j)
{
if(s[i][j] == '.')
{
if(!r[i] && !c[j]) rr[i] = cc[j] = 1;
if(rf[i][1] && rf[i][0] < j && rf[i][1] > j || cf[j][1] && cf[j][0] < i && cf[j][1] > i)
{
ok = 0;
break;
}
}
}
if(!ok) break;
}
for (int i = 1; i <= n; ++ i) if(!r[i] && !rr[i]) ok = 0;
for (int i = 1; i <= m; ++ i) if(!c[i] && !cc[i]) ok = 0;
if(ok) printf("%d\n", solve());
else puts("-1");
return 0;
}
思路:
差分约束
若有 x i < x j x_i
代码:
#include
using namespace std;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
typedef vector<int> vi;
typedef queue<int> qi;
typedef long long ll;
typedef pair<int, int> pii;
typedef double db;
const int N = 2e5 + 5;
struct edge
{
int y, nxt;
}e[N], er[N];
int p[N], pr[N], dfn[N], low[N], stk[N];
int tot, tp, n, m, eid, eidr, ok = 1, cnt;
bool ins[N], vr[N], v[N];
char ans[N];
void add(int x, int y)
{
e[eid] = edge{y, p[x]}; p[x] = eid ++;
}
void addr(int x, int y)
{
er[eidr] = edge{y, pr[x]}; pr[x] = eidr ++;
}
void tarjan(int x)
{
if(!ok) return;
dfn[x] = low[x] = ++ tot;
stk[++ tp] = x; ins[x] = 1;
for (int i = p[x]; ~i; i = e[i].nxt)
{
int y = e[i].y;
if(!dfn[y])
{
tarjan(y);
low[x] = min(low[x], low[y]);
}
else if(ins[y])
{
ok = 0;
low[x] = min(low[x], dfn[y]);
}
}
if(low[x] == dfn[x])
{
++ cnt;
do
{
ins[stk[tp]] = 0;
}while (stk[tp --] != x);
}
}
void dfs(int x)
{
v[x] = 1;
for (int i = p[x]; ~i; i = e[i].nxt)
{
int y = e[i].y;
if(v[y]) continue;
dfs(y);
}
}
void dfsr(int x)
{
vr[x] = 1;
for (int i = pr[x]; ~i; i = er[i].nxt)
{
int y = er[i].y;
if(vr[y]) continue;
dfsr(y);
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(p, -1, sizeof(p));
memset(pr, -1, sizeof(pr));
for (int i = 1; i <= m; ++ i)
{
int x, y; scanf("%d%d", &x, &y);
add(x, y);
addr(y, x);
}
for (int i = 1; i <= n; ++ i)
if(!dfn[i]) tarjan(i);
if(!ok) return puts("-1"), 0;
int ct = 0;
for (int i = 1; i <= n; ++ i)\
{
if(!vr[i] && !v[i])
ct ++, ans[i] = 'A';
else ans[i] = 'E';
dfs(i); dfsr(i);
}
printf("%d\n", ct);
for (int i = 1; i <= n; ++ i) putchar(ans[i]);
puts("");
return 0;
}
二分,目前还补不动,贴个其它博客的题解吧
F题