PySpark中RDD的数据输出详解

目录

一. 回顾

二.输出为python对象

collect算子

演示

reduce算子

 演示

 take算子

 演示

 count算子

 演示

小结

三.输出到文件中

savaAsTextFile算子

 演示

配置Hadoop依赖

 修改rdd分区为1个

 小结

四.练习案例

需求: 

代码


PySpark中RDD的数据输出详解_第1张图片

 

一. 回顾

数据输入:

  • sc.parallelize
  • sc.textFile

数据计算:

  • rdd.map
  • rdd.flatMap
  • rdd.reduceByKey
  • .…

PySpark中RDD的数据输出详解_第2张图片

二.输出为python对象

数据输出可用的方法是很多的,这里简单介绍常会用到的4个

  1. collect:将RDD内容转换为list
  2. reduce:对RDD内容进行自定义聚合
  3. take:取出RDD的前N个元素组成list
  4. count:统计RDD元素个数

collect算子

功能:将RDD各个分区内的数据,统一收集到Driver中,形成一个List对象
用法:
rdd.collect()
返回值是一个list

演示

from pyspark import SparkContext,SparkConf
import os
os.environ["PYSPARK_PYTHON"]="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
sc=SparkContext(conf=conf)

#准备一个RDD
rdd=sc.parallelize([1,2,3,4,5])
#collect算子,输出RDD为list对象
print("rdd是:",rdd)
print("rdd.collect是:",rdd.collect())

结果是

PySpark中RDD的数据输出详解_第3张图片

 单独输出rdd,输出的是rdd的类名而非内容

reduce算子

功能:对RDD数据集按照你传入的逻辑进行聚合

语法:
PySpark中RDD的数据输出详解_第4张图片

代码

PySpark中RDD的数据输出详解_第5张图片 

 返回值等于计算函数的返回值PySpark中RDD的数据输出详解_第6张图片

 演示

from pyspark import SparkContext,SparkConf
import os
os.environ["PYSPARK_PYTHON"]="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
sc=SparkContext(conf=conf)

#准备一个RDD
rdd=sc.parallelize([1,2,3,4,5])
#collect算子,输出RDD为list对象
print("rdd是:",rdd)
print("rdd.collect是:",rdd.collect())
print("rdd.collect的类型是:",type(rdd.collect()))
#reduce算子,对RDD进行两两聚合
num=rdd.reduce(lambda x,y:x+y)
print(num)

结果是

PySpark中RDD的数据输出详解_第7张图片

 take算子

功能:取RDD的前N个元素,组合成list返回给你
用法:

 PySpark中RDD的数据输出详解_第8张图片

 演示

from pyspark import SparkContext,SparkConf
import os
os.environ["PYSPARK_PYTHON"]="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
sc=SparkContext(conf=conf)

#准备一个RDD
rdd=sc.parallelize([1,2,3,4,5])
#collect算子,输出RDD为list对象
print("rdd是:",rdd)
print("rdd.collect是:",rdd.collect())
print("rdd.collect的类型是:",type(rdd.collect()))
#reduce算子,对RDD进行两两聚合
num=rdd.reduce(lambda x,y:x+y)
print(num)
#take算子,取出RDD前n个元素,组成list返回
take_list=rdd.take(3)
print(take_list)

结果是

PySpark中RDD的数据输出详解_第9张图片

 count算子

功能:计算RDD有多少条数据,返回值是一个数字
用法:

PySpark中RDD的数据输出详解_第10张图片

 演示

from pyspark import SparkContext,SparkConf
import os
os.environ["PYSPARK_PYTHON"]="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
sc=SparkContext(conf=conf)

#准备一个RDD
rdd=sc.parallelize([1,2,3,4,5])
#collect算子,输出RDD为list对象
print("rdd是:",rdd)
print("rdd.collect是:",rdd.collect())
print("rdd.collect的类型是:",type(rdd.collect()))
#reduce算子,对RDD进行两两聚合
num=rdd.reduce(lambda x,y:x+y)
print(num)
#take算子,取出RDD前n个元素,组成list返回
take_list=rdd.take(3)
print(take_list)
#count算子,统计rdd中有多少条数据,返回值为数字
num_count=rdd.count()
print(num_count)
#关闭链接
sc.stop()

结果是

PySpark中RDD的数据输出详解_第11张图片

小结

1.Spark的编程流程就是:

  • 将数据加载为RDD(数据输入)对RDD进行计算(数据计算)
  • 将RDD转换为Python对象(数据输出)

 2.数据输出的方法

  • collect:将RDD内容转换为list
  • reduce:对RDD内容进行自定义聚合
  • take:取出RDD的前N个元素组成list
  • count:统计RDD元素个数

数据输出可用的方法是很多的,这里只是简单介绍4个

三.输出到文件中

savaAsTextFile算子

功能:将RDD的数据写入文本文件中支持本地写出, hdfs等文件系统.
代码:

 演示

PySpark中RDD的数据输出详解_第12张图片

 这是因为这个方法本质上依赖大数据的Hadoop框架,需要配置Hadoop 依赖.

配置Hadoop依赖

调用保存文件的算子,需要配置Hadoop依赖。

  • 下载Hadoop安装包解压到电脑任意位置
  • 在Python代码中使用os模块配置: os.environ['HADOOP_HOME']='HADOOP解压文件夹路径′。
  • 下载winutils.exe,并放入Hadoop解压文件夹的bin目录内
  • 下载hadoop.dll,并放入:C:/Windows/System32文件夹内

配置完成之后,执行下面的代码

from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON']="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"
os.environ['HADOOP_HOME']='D:/heima_hadoop/hadoop-3.0.0'

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
sc=SparkContext(conf=conf)

#准备rdd
rdd1=sc.parallelize([1,2,3,4,5])
rdd2=sc.parallelize([("asdf",3),("w3er_!2",5),("hello",3)])
rdd3=sc.parallelize([[1,2,3],[3,2,4],[4,3,5]])
#输出到文件中
rdd1.saveAsTextFile("D:/output1")
rdd2.saveAsTextFile("D:/output2")
rdd3.saveAsTextFile("D:/output3")

结果是

PySpark中RDD的数据输出详解_第13张图片

 输出的文件夹中有这么8文件,是因为RDD被默认为分成8个分区
SaveAsTextFile算子输出文件的个数是根据RDD的分区来决定的,有多少分区就会输出多少个文件,RDD在本电脑中默认是8(该电脑CPU核心数是8核)

PySpark中RDD的数据输出详解_第14张图片

 打开设备管理器就可以查看处理器个数,这里是有8个逻辑CPU
或者打开任务管理器就可以看到是4核8个逻辑CPU

PySpark中RDD的数据输出详解_第15张图片

 修改rdd分区为1个

方式1, SparkConf对象设置属性全局并行度为1:

 方式2,创建RDD的时候设置( parallelize方法传入numSlices参数为1)

 

from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON']="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"
os.environ['HADOOP_HOME']='D:/heima_hadoop/hadoop-3.0.0'

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
#rdd分区设置为1
conf.set("spark.default.parallelism","1")
sc=SparkContext(conf=conf)

#准备rdd
rdd1=sc.parallelize([1,2,3,4,5])
rdd2=sc.parallelize([("asdf",3),("w3er_!2",5),("hello",3)])
rdd3=sc.parallelize([[1,2,3],[3,2,4],[4,3,5]])
#输出到文件中
rdd1.saveAsTextFile("D:/output1")
rdd2.saveAsTextFile("D:/output2")
rdd3.saveAsTextFile("D:/output3")

结果是

PySpark中RDD的数据输出详解_第16张图片

 小结

1.RDD输出到文件的方法

  • rdd.saveAsTextFile(路径)
  • 输出的结果是一个文件夹
  • 有几个分区就输出多少个结果文件

2.如何修改RDD分区

  • SparkConf对象设置conf.set("spark.default.parallelism", "7")
  • 创建RDD的时候,sc.parallelize方法传入numSlices参数为1

四.练习案例

PySpark中RDD的数据输出详解_第17张图片

需求: 

读取文件转换成RDD,并完成:

  1. 打印输出:热门搜索时间段(小时精度)Top3
  2. 打印输出:热门搜索词Top3
  3. 打印输出:统计黑马程序员关键字在哪个时段被搜索最多
  4. 将数据转换为JSON格式,写出为文件

代码

from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON']="C:/Users/hawa/AppData/Local/Programs/Python/Python39/python.exe"
os.environ['HADOOP_HOME']='D:/heima_hadoop/hadoop-3.0.0'

conf=SparkConf().setMaster("local[*]").setAppName("test_spark")
#rdd分区设置为1
conf.set("spark.default.parallelism","1")
sc=SparkContext(conf=conf)

rdd=sc.textFile("D:/search_log.txt")
#需求1 打印输出:热门搜索时间段(小时精度)Top3
# 取出全部的时间并转换为小时
# 转换为(小时,1)的二元元组
# Key分组聚合Value
# 排序(降序)
# 取前3
result1=rdd.map(lambda x:x.split("\t")).\
    map(lambda x:x[0][:2]).\
    map(lambda x:(x,1)).\
    reduceByKey(lambda x,y:x+y).\
    sortBy(lambda x:x[1],ascending=False,numPartitions=1).\
    take(3)#上面用的‘/’是换行的意思,当一行代码太长时就可以这样用
print(result1)
#需求2 打印输出:热门搜索词Top3
# 取出全部的搜索词
# (词,1)二元元组
# 分组聚合
# 排序
# Top3
result2=rdd.map(lambda x:x.split("\t")).\
    map(lambda x:x[2])\
    .map(lambda x:(x,1)).\
    reduceByKey(lambda x,y:x+y).\
    sortBy(lambda x:x[1],ascending=False,numPartitions=1).\
    take(3)
print(result2)
#需求3 打印输出:统计黑马程序员关键字在哪个时段被搜索最多
result3=rdd.map(lambda x:x.split("\t")).\
    filter((lambda x:x[2]=="黑马程序员")).\
    map(lambda x:(x[0][:2],1)).\
    reduceByKey(lambda x,y:x+y).\
    sortBy(lambda x:x[1],ascending=False,numPartitions=1).\
    take(3)
print(result3)
#需求4 将数据转换为JSON格式,写出为文件
rdd.map(lambda x:x.split("\t")).\
    map(lambda x:{"time":x[0],"id":x[1],"key":x[2],"num1":x[3],"num2":x[4],"url":x[5]})\
    .saveAsTextFile("D:/out_json")

结果是

PySpark中RDD的数据输出详解_第18张图片

 PySpark中RDD的数据输出详解_第19张图片

 

 

你可能感兴趣的:(大数据,python,json,spark,PySpark的数据输出)