13-5_Qt 5.9 C++开发指南_基于信号量的线程同步_Semaphore

文章目录

  • 1. 信号量的原理
  • 2. 双缓冲区数据采集和读取线程类设计
  • 3. QThreadDAQ和QThreadShow 的使用
  • 4. 源码
    • 4.1 可视化UI设计框架
    • 4.2 qmythread.h
    • 4.3 qmythread.cpp
    • 4.4 dialog.h
    • 4.5 dialog.cpp

1. 信号量的原理

信号量(Semaphore)是另一种限制对共享资源进行访问的线程同步机制,它与互斥量(Mutex)相似,但是有区别。一个互斥量只能被锁定一次,而信号量可以多次使用。信号量通常用来保护一定数量的相同的资源,如数据采集时的双缓冲区。

QSemaphore 是实现信号量功能的类,它提供以下几个基本的函数:

  • acquire(int n)尝试获得 n 个资源。如果没有这么多资源,线程将阻塞直到有 n 个资源可用
  • release(int n)释放 n 个资源,如果信号量的资源已全部可用之后再 release(),就可以创建更多的资源,增加可用资源的个数:
  • int available()返回当前信号量可用的资源个数,这个数永远不可能为负数,如果为 0,就说明当前没有资源可用;
  • bool tryAcquire(int n = 1),尝试获取 n 个资源,不成功时不阻塞线程。

定义QSemaphore 的实例时,可以传递一个数值作为初始可用的资源个数。

下面的一段示意代码,说明 QSemaphore 的几个函数的作用。

QSemaphore WC(5);  // WC.available() == 5,初始资源个数为 5个
WC.acquire(4):  // WC.available() == 1,用了4 个资源,还剩余1个可用
WC.release(2);  // WC.available() == 3,释放了2个资源,剩余3个可用
WC.acquire(3);  // WC.available() == 0,又用了3 个资源,剩余0个可用
WC.tryAcquire(1);  //因为WC.available() == 0,返回 false,
WC.acquire();  //因为 wc.available() == 0,没有资源可用,阻塞

为了理解信号量及上面这段代码的意义,可以假想变量 WC 是一个公共卫生间,初始化时定义WC有5个位置可用。

  • WC.acquire(4),成功进去 4 个人,占用了4 个位置,还剩余1个位置

  • WC.release(2),出来了 2个人,剩余3 个位置可用:

  • WC.acquire(3),又进去 3 个人,剩余0个位置可用;

  • WC.tryAcquire(1),有一个人尝试进去,但是因为没有位置了,他不等待,走了,tryAcquire()函数返回 false:

  • WC.acquire(),有一个人必须进去,但是因为没有位置了,他就一直在外面等着,直到有其他人出来,空余出位置来。

互斥量相当于列车上的卫生间,一次只允许一个人进出,信号量则是多人公共卫生间,允许多人进出。n 个资源就是信号量需要保护的共享资源,至于资源如何分配,就是内部处理的问题了。

2. 双缓冲区数据采集和读取线程类设计

理解:可以用于实现自行定义的缓冲区大小,利用2个子线程对不断产生的数据不间断进行写入及处理,主线程主要进行显示

信号量通常用来保护一定数量的相同的资源,如数据采集时的双缓冲区,适用于Producer/Consumer 模型。

在实例 samp13_5中,创建类似于 Producer/Consumer 模型的两个线程类 QThreadDAQ 和QThreadShow。qmythread.h 文件中这两个类的定义如下:

#ifndef QMYTHREAD_H
#define QMYTHREAD_H

//#include    
#include    

class QThreadDAQ : public QThread
{
    Q_OBJECT

private:
    bool    m_stop=false; //停止线程
protected:
    void    run() Q_DECL_OVERRIDE;
public:
    QThreadDAQ();
    void    stopThread();
};

class QThreadShow : public QThread
{
    Q_OBJECT
private:
    bool    m_stop=false; //停止线程
protected:
    void    run() Q_DECL_OVERRIDE;
public:
    QThreadShow();
    void    stopThread();
signals:
    void    newValue(int *data,int count, int seq);
};
#endif // QMYTHREAD_H

QThreadDAQ 是数据采集线程,例如在使用数据采集卡进行连续数据采集时,需要一个单独的线程将采集卡采集的数据读取到缓冲区内。
QThreadShow 是数据读取线程,用于读取已存满数据的缓冲区中的数据并传递给主线程显示,采用信号与槽机制与主线程交互。
QThreadDAQ/QThreadShow 类的定义与使用 QWaitCondition 的实例 samp13_4中的QThreadProducer/QThreadConsumer 类的定义类似,只是QThreadShow 的信号 newValue()采用了指针作为传递参数,用于一次传递出一个缓冲区的数据。

qmythread.cpp 文件中QThreadDAQ和QThreadShow 的主要功能代码如下:

#include    "qmythread.h"
#include    

const int BufferSize = 8;
int buffer1[BufferSize];
int buffer2[BufferSize];
int curBuf=1; //当前正在写入的Buffer

int bufNo=0; //采集的缓冲区序号

quint8   counter=0;//数据生成器

QSemaphore emptyBufs(2);//信号量:空的缓冲区个数,初始资源个数为2
QSemaphore fullBufs; //满的缓冲区个数,初始资源为0

QThreadDAQ::QThreadDAQ()
{

}

void QThreadDAQ::stopThread()
{
    m_stop=true;
}

void QThreadDAQ::run()
{
    m_stop=false;//启动线程时令m_stop=false
    bufNo=0;//缓冲区序号
    curBuf=1; //当前写入使用的缓冲区
    counter=0;//数据生成器

    int n=emptyBufs.available();
    if (n<2)  //保证 线程启动时emptyBufs.available==2
      emptyBufs.release(2-n);

    while(!m_stop)//循环主体
    {
        emptyBufs.acquire();//获取一个空的缓冲区
        for(int i=0;i<BufferSize;i++) //产生一个缓冲区的数据
        {
            if (curBuf==1)
                buffer1[i]=counter; //向缓冲区写入数据
            else
                buffer2[i]=counter;
            counter++; //模拟数据采集卡产生数据

            msleep(50); //每50ms产生一个数
        }

        bufNo++;//缓冲区序号
        if (curBuf==1) // 切换当前写入缓冲区
          curBuf=2;
        else
          curBuf=1;

        fullBufs.release(); //有了一个满的缓冲区,available==1
    }
    quit();
}

void QThreadShow::run()
{
    m_stop=false;//启动线程时令m_stop=false

    int n=fullBufs.available();
    if (n>0)
       fullBufs.acquire(n); //将fullBufs可用资源个数初始化为0

    while(!m_stop)//循环主体
    {
        fullBufs.acquire(); //等待有缓冲区满,当fullBufs.available==0阻塞

        int bufferData[BufferSize];
        int seq=bufNo;

        if(curBuf==1) //当前在写入的缓冲区是1,那么满的缓冲区是2
            for (int i=0;i<BufferSize;i++)
               bufferData[i]=buffer2[i]; //快速拷贝缓冲区数据
        else
            for (int i=0;i<BufferSize;i++)
               bufferData[i]=buffer1[i];

        emptyBufs.release();//释放一个空缓冲区
        emit    newValue(bufferData,BufferSize,seq);//给主线程传递数据
    }
    quit();
}

QThreadShow::QThreadShow()
{

}

void QThreadShow::stopThread()
{
    m_stop=true;
}

在共享变量区定义了两个缓冲区 buffer1和 buffer2,都是长度为 BufferSize 的数组。

变量 curBuf 记录当前写入操作的缓冲区编号,其值只能是 1或2,表示 bufferl 或 buffer2,bufNo是累积的缓冲区个数编号,counter 是模拟采集数据的变量。
信号量emptyBufs 初始资源个数为2,表示有2个空的缓冲区可用。

信号量 fullBufs初始化资源个数为0,表示写满数据的缓冲区个数为零。

QThreadDAQ::run()采用双缓冲方式进行模拟数据采集,线程启动时初始化共享变量,特别的是使emptyBufs 的可用资源个数初始化为2。
在while 循环体里,第一行语句 emptyBufs.acquire()使信号量emptyBufs 获取一个资源,即获取一个空的缓冲区。用于数据缓存的有两个缓冲区,只要有一个空的缓冲区,就可以向这个缓冲区写入数据。

while 循环体里的 for 循环每隔 50 毫秒使 counter 值加 1,然后写入当前正在写入的缓冲区,当前写入哪个缓冲区由 curBuf 决定。counter 是模拟采集的数据,连续增加可以判断采集的数据是否连续。

完成 for 循环后正好写满一个缓冲区,这时改变 curBuf 的值,切换用于写入的缓冲区。

写满一个缓冲区之后,使用 fullBufs.release()为信号量 fullBufs 释放一个资源,这时 fullBufs.available==l,表示有一个缓冲区被写满了。这样,QThreadShow 线程里使用 fullBufs.acquire()就可以获得一个资源,可以读取已写满的缓冲区里的数据。

QThreadShow::run()用于监测是否有已经写满数据的缓冲区,只要有缓冲区写满了数据,就立刻读取出数据,然后释放这个缓冲区给 OThreadDAQ 线程用于写入。

QThreadShow::run()函数的初始化部分使 fullBufs.available==0,即线程刚启动时是没有资源的。

在 while循环体里第一行语句就是通过 fullBufs.acquire()以阻塞方式获取一个资源,只有当QThreadDAQ 线程里写满一个缓冲区,执行一次fullBufs.release()后,fullBufs.acquire()才获得资源并执行后面的代码。后面的代码就立即用临时变量将缓冲区里的数据读取出来,再调用emptyBufs.release()给信号量emptyBufs 释放一个资源,然后发射信号 newValue,由主线程读取数据并显示。
所以,这里使用了双缓冲区、两个信号量实现采集和读取两个线程的协调操作。采集线程里使用emptyBufs.acquire()获取可以写入的缓冲区。
实际使用数据采集卡进行连续数据采集时,采集线程是不能停顿下来的,也就是说万一读取线程执行较慢,采集线程是不会等待的。所以实际情况下,读取线程的操作应该比采集线程快。

3. QThreadDAQ和QThreadShow 的使用

设计窗口基于 QDialog 应用程序 samp13_5,对话框的类定义如下(省略了一些不重要的或与前面实例重复的部分内容):

class Dialog : public QDialog
{
    Q_OBJECT

private:
    QThreadDAQ   threadProducer;
    QThreadShow   threadConsumer;
private slots:
    void    onthreadB_newValue(int *data, int count, int bufNo);

};

Dialog类定义了两个线程的实例,threadProducer 和 threadConsumer。

自定义了一个槽函数 onthreadB_newValue(),用于与 threadConsumer 的信号关联,在 Dialog的构造函数里进行了关联。

connect(&threadConsumer,SIGNAL(newValue(int*,int,int)),this,SLOT(onthreadB_newValue(int*,int,int)));

槽函数onthreadB_newValue()的功能就是读取一个缓冲区里的数据并显示,其实现代码如下

void Dialog::onthreadB_newValue(int *data, int count, int bufNo)
{ //读取threadConsumer 传递的缓冲区的数据
    QString  str=QString::asprintf("第 %d 个缓冲区:",bufNo);
    for (int i=0;i<count;i++)
    {
        str=str+QString::asprintf("%d, ",*data);
        data++;
    }
    str=str+'\n';

    ui->plainTextEdit->appendPlainText(str);
}

传递的指针型参数int*data 是一个数组指针,count 是缓冲区长度。(此处注意主线程和子线程利用信号槽传递数组值的方法

“启动线程”和“结束线程”两个按钮的代码如下(省略了按键使能控制的代码):

void Dialog::on_btnStopThread_clicked()
{//结束线程
//    threadConsumer.stopThread();//结束线程的run()函数执行
    threadConsumer.terminate(); //因为threadB可能处于等待状态,所以用terminate强制结束
    threadConsumer.wait();//

    threadProducer.terminate();//结束线程的run()函数执行
    threadProducer.wait();//

    ui->btnStartThread->setEnabled(true);
    ui->btnStopThread->setEnabled(false);
}

void Dialog::on_btnStartThread_clicked()
{//启动线程
    threadConsumer.start();
    threadProducer.start();

    ui->btnStartThread->setEnabled(false);
    ui->btnStopThread->setEnabled(true);
}

启动线程时,先启动 threadConsumer,再启动 threadProducer,否则可能丢失第1个缓冲区的数据。
结束线程时,都采用 terminate()函数强制结束线程,因为两个线程之间有互锁的关系,若不使用terminate()强制结束会出现线程无法结束的问题。

程序运行时的界面如图 13-3 所示
13-5_Qt 5.9 C++开发指南_基于信号量的线程同步_Semaphore_第1张图片
从图 13-3 可以看出,没有出现丢失缓冲区或数据点的情况,两个线程之间协调的很好,将QThreadDAQ:run()函数中模拟采样率的延时时间调整为2秒也没问题(正常设置为50毫秒)。

在实际的数据采集中,要保证不丢失缓冲区或数据点,数据读取线程的速度必须快过数据写入缓冲区的线程的速度。

4. 源码

4.1 可视化UI设计框架

13-5_Qt 5.9 C++开发指南_基于信号量的线程同步_Semaphore_第2张图片

4.2 qmythread.h

#ifndef QMYTHREAD_H
#define QMYTHREAD_H

//#include    
#include    

class QThreadDAQ : public QThread
{
    Q_OBJECT

private:
    bool    m_stop=false; //停止线程
protected:
    void    run() Q_DECL_OVERRIDE;
public:
    QThreadDAQ();
    void    stopThread();
};

class QThreadShow : public QThread
{
    Q_OBJECT
private:
    bool    m_stop=false; //停止线程
protected:
    void    run() Q_DECL_OVERRIDE;
public:
    QThreadShow();
    void    stopThread();
signals:
    void    newValue(int *data,int count, int seq);
};
#endif // QMYTHREAD_H

4.3 qmythread.cpp

#include    "qmythread.h"
#include    

const int BufferSize = 8;
int buffer1[BufferSize];
int buffer2[BufferSize];
int curBuf=1; //当前正在写入的Buffer

int bufNo=0; //采集的缓冲区序号

quint8   counter=0;//数据生成器

QSemaphore emptyBufs(2);//信号量:空的缓冲区个数,初始资源个数为2
QSemaphore fullBufs; //满的缓冲区个数,初始资源为0

QThreadDAQ::QThreadDAQ()
{

}

void QThreadDAQ::stopThread()
{
    m_stop=true;
}

void QThreadDAQ::run()
{
    m_stop=false;//启动线程时令m_stop=false
    bufNo=0;//缓冲区序号
    curBuf=1; //当前写入使用的缓冲区
    counter=0;//数据生成器

    int n=emptyBufs.available();
    if (n<2)  //保证 线程启动时emptyBufs.available==2
      emptyBufs.release(2-n);

    while(!m_stop)//循环主体
    {
        emptyBufs.acquire();//获取一个空的缓冲区
        for(int i=0;i<BufferSize;i++) //产生一个缓冲区的数据
        {
            if (curBuf==1)
                buffer1[i]=counter; //向缓冲区写入数据
            else
                buffer2[i]=counter;
            counter++; //模拟数据采集卡产生数据

            msleep(50); //每50ms产生一个数
        }

        bufNo++;//缓冲区序号
        if (curBuf==1) // 切换当前写入缓冲区
          curBuf=2;
        else
          curBuf=1;

        fullBufs.release(); //有了一个满的缓冲区,available==1
    }
    quit();
}

void QThreadShow::run()
{
    m_stop=false;//启动线程时令m_stop=false

    int n=fullBufs.available();
    if (n>0)
       fullBufs.acquire(n); //将fullBufs可用资源个数初始化为0

    while(!m_stop)//循环主体
    {
        fullBufs.acquire(); //等待有缓冲区满,当fullBufs.available==0阻塞

        int bufferData[BufferSize];
        int seq=bufNo;

        if(curBuf==1) //当前在写入的缓冲区是1,那么满的缓冲区是2
            for (int i=0;i<BufferSize;i++)
               bufferData[i]=buffer2[i]; //快速拷贝缓冲区数据
        else
            for (int i=0;i<BufferSize;i++)
               bufferData[i]=buffer1[i];

        emptyBufs.release();//释放一个空缓冲区
        emit    newValue(bufferData,BufferSize,seq);//给主线程传递数据
    }
    quit();
}

QThreadShow::QThreadShow()
{

}

void QThreadShow::stopThread()
{
    m_stop=true;
}

4.4 dialog.h

#ifndef DIALOG_H
#define DIALOG_H

#include    
#include    

#include    "qmythread.h"

namespace Ui {
class Dialog;
}

class Dialog : public QDialog
{
    Q_OBJECT

private:
    QThreadDAQ   threadProducer;
    QThreadShow   threadConsumer;
protected:
    void    closeEvent(QCloseEvent *event);
public:
    explicit Dialog(QWidget *parent = 0);
    ~Dialog();

private slots:
    void    onthreadA_started();
    void    onthreadA_finished();

    void    onthreadB_started();
    void    onthreadB_finished();

    void    onthreadB_newValue(int *data, int count, int bufNo);


    void on_btnClear_clicked();

    void on_btnStopThread_clicked();

    void on_btnStartThread_clicked();

private:
    Ui::Dialog *ui;
};

#endif // DIALOG_H

4.5 dialog.cpp

#include "dialog.h"
#include "ui_dialog.h"

void Dialog::closeEvent(QCloseEvent *event)
{//窗口关闭
    if (threadProducer.isRunning())
    {
        threadProducer.terminate();//结束线程的run()函数执行
        threadProducer.wait();//
    }

    if (threadConsumer.isRunning())
    {
        threadConsumer.terminate(); //因为threadB可能处于等待状态,所以用terminate强制结束
        threadConsumer.wait();//
    }

    event->accept();
}

Dialog::Dialog(QWidget *parent) :
    QDialog(parent),
    ui(new Ui::Dialog)
{
    ui->setupUi(this);

    connect(&threadProducer,SIGNAL(started()),this,SLOT(onthreadA_started()));
    connect(&threadProducer,SIGNAL(finished()),this,SLOT(onthreadA_finished()));

    connect(&threadConsumer,SIGNAL(started()),this,SLOT(onthreadB_started()));
    connect(&threadConsumer,SIGNAL(finished()),this,SLOT(onthreadB_finished()));

    connect(&threadConsumer,SIGNAL(newValue(int*,int,int)),
            this,SLOT(onthreadB_newValue(int*,int,int)));
}

Dialog::~Dialog()
{
    delete ui;
}

void Dialog::onthreadA_started()
{
    ui->LabA->setText("Thread Producer状态: started");
}

void Dialog::onthreadA_finished()
{
    ui->LabA->setText("Thread Producer状态: finished");
}

void Dialog::onthreadB_started()
{
    ui->LabB->setText("Thread Consumer状态: started");
}

void Dialog::onthreadB_finished()
{
    ui->LabB->setText("Thread Consumer状态: finished");
}

void Dialog::onthreadB_newValue(int *data, int count, int bufNo)
{ //读取threadConsumer 传递的缓冲区的数据
    QString  str=QString::asprintf("第 %d 个缓冲区:",bufNo);
    for (int i=0;i<count;i++)
    {
        str=str+QString::asprintf("%d, ",*data);
        data++;
    }
    str=str+'\n';

    ui->plainTextEdit->appendPlainText(str);
}

void Dialog::on_btnClear_clicked()
{
    ui->plainTextEdit->clear();
}

void Dialog::on_btnStopThread_clicked()
{//结束线程
//    threadConsumer.stopThread();//结束线程的run()函数执行
    threadConsumer.terminate(); //因为threadB可能处于等待状态,所以用terminate强制结束
    threadConsumer.wait();//

    threadProducer.terminate();//结束线程的run()函数执行
    threadProducer.wait();//

    ui->btnStartThread->setEnabled(true);
    ui->btnStopThread->setEnabled(false);
}

void Dialog::on_btnStartThread_clicked()
{//启动线程
    threadConsumer.start();
    threadProducer.start();

    ui->btnStartThread->setEnabled(false);
    ui->btnStopThread->setEnabled(true);
}

你可能感兴趣的:(#,Qt,5.9,C++开发指南,qt,c++)