- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- 从养殖场到科技前沿:YOLOv11+OpenCV精准计数鸡蛋与鸡
星际编程喵
Python探索之旅YOLOopencv人工智能python目标检测计算机视觉
前言谁能想到,鸡蛋和鸡的计数居然能变成一项高科技活儿?想象一下,早上去市场,卖家把鸡蛋摔得稀巴烂,结果鸡蛋滚得到处都是——难道你就得一个个捡回来数?还得小心别弄错?可是,你又不是超人!别担心,科技来帮忙!今天的主角是YOLOv11和OpenCV,它们是计算机视觉领域的两位大佬,专门为你解决这一难题。无论是鸡蛋还是鸡,它们都能精准识别,数得清清楚楚。不信?那我们就一起去看看怎么用这对“黄金搭档”解决
- OpenCV及基本用法
m0_74823683
opencv人工智能计算机视觉
一.OpenCV介绍1.OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库。OpenCV是最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 人工智能推理模型(S1-32B)超越DeepSeek?
deepdata_cn
垂域模型人工智能人工智能大语言模型
S1模型是由斯坦福大学和华盛顿大学的研究团队在李飞飞教授的领衔下开发的人工智能推理模型。从2000年李飞飞进入加州理工学院攻读研究生起,就一直从事人工智能研究,在计算机视觉领域创立了拥有1500万张图片的ImageNet数据库,为人工智能计算机视觉研究奠定了基础,也积累了深厚的人工智能技术理论和实践经验。论文地址:https://arxiv.org/pdf/2501.19393一、发展过程模型采用
- 土壤分析:土壤养分分析_(14).土壤养分与植物生长的关系
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤养分与植物生长的关系引言土壤养分是植物生长发育的必要条件之一。植物通过根系从土壤中吸收养分,这些养分对于植物的光合作用、细胞分裂、蛋白质合成等生理过程至关重要。因此,了解土壤养分与植物生长的关系对于提高作物产量、优化土壤管理具有重要意义。本节将详细介绍土壤养分的主要成分、植物对这些养分的需求以及如何通过计算机视觉技术来分析土壤养分与植物生长的关系。土壤养分的主要成分土壤养分主要包括以下几类:宏
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 【图像处理】使用Python进行实时人脸检测和识别
无水先生
AI原理和python实现深度学习和计算机视觉人工智能综合人工智能
一、说明你有没有想过用Python构建一个面部识别系统?不要再看了!在本教程中,我们将使用face_recognition库来检测和识别视频流、图像甚至使用网络摄像头实时检测和识别人脸。二、基本概念人脸识别和人脸检测是计算机视觉领域的两个独立任务。人脸检测是在照片或视频中自动定位人脸的过程。它通常涉及查找面部关键点的位置,例如嘴角和眼睛,并使用这些点来确定面部的位置、大小和方向。另一方面,人脸识别
- 基于OpenCV的单目测距
_老码
项目实战opencv人工智能计算机视觉
随着计算机视觉技术的发展,单目测距作为一种重要的视觉测量手段,在众多领域得到了广泛的应用。本文将探讨基于OpenCV的单目测距原理、局限性、实际应用场景以及一些优化方案。单目测距的原理单目测距是指利用一台摄像机拍摄到的单一图像来进行距离测量的技术。与双目测距相比,单目测距不需要复杂的立体匹配算法,因此具有计算量小、实现简单的特点。然而,单目测距也面临着许多挑战,如尺度模糊性、深度信息缺乏等问题。单
- Python在DevOps中的应用:自动化CI/CD管道的实现
蒙娜丽宁
Python杂谈pythonjavascript开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在现代软件开发中,DevOps理念的引入极大地提升了开发与运维的协作效率,而持续集成(CI)与持续部署(CD)则是其核心实践之一。Python作为一种简洁高效的编程语言,凭借其丰富的库和灵活性,成为实现自动化CI/CD管道的理想选择。本文深入探讨了如何利
- 数字人技术在短视频中的应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
数字人、短视频、人工智能、计算机视觉、自然语言处理、虚拟主播、内容创作1.背景介绍短视频作为一种新兴的传播媒介,其内容形式丰富、传播速度快、用户粘性强,已成为当今互联网领域最热门的应用之一。随着技术的不断发展,数字人技术逐渐成熟,并开始在短视频领域得到广泛应用。数字人是指利用计算机技术模拟真实人类形象和行为的虚拟角色,其具备逼真的外形、流畅的肢体动作和自然的语言表达能力。数字人技术在短视频领域的应
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- Python知识点:基于Python技术,如何使用YOLO进行实时物体检测
超哥同学
Python系列pythonYOLO开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!使用YOLO进行实时物体检测的Python技术详解实时物体检测是计算机视觉中的一个关键任务,它要求算法能够快速且准确地识别和定位图像或视频流中的物体。YOLO(YouOnlyLookOnce)算法因其速度快、性能高而受到广泛关注。在本文中,我们将详细介绍如何使用Python和YOLO
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- CVPR2024最佳论文出炉!历年CVPR最佳论文盘点(2000 年—2024 年)
沃恩智慧
深度学习人工智能CVPR人工智能论文阅读深度学习
cvpr2024最佳论文出炉,本次论文可谓是万里挑一。作为计算机视觉领域的顶级学术会议CVPR,每年评选出的一篇或多篇最佳论文,不仅为计算机视觉领域的顶级学术荣誉,更代表了将对未来技术或行业发展产生重要影响的里程碑式研究成果。为了帮助大家对这批计算机领域的重要论文进行复习,沃恩智慧为大家精心整理了一份从2000年—2024年的CVPR最佳论文盘点。需要的同学关注公众号【沃的顶会】,回复“CVPR”
- 详解AI作画算法原理
Jimaks
后端AIpythonai作画python人工智能
在艺术与科技的交汇处,AI作画正以惊人的创造力刷新着我们对美的认知。这一领域融合了深度学习、计算机视觉和生成模型的前沿技术,让机器能够“想象”并创作出令人惊叹的图像。本文将深入浅出地探讨AI作画的核心算法原理,分析常见问题与易错点,并通过一个简单的代码示例,带领大家一窥AI艺术创作的奥秘。一、核心概念与原理1.生成对抗网络(GANs)GANs是AI作画中最著名的算法之一,由IanGoodfello
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 计算机视觉(Computer Vision,CV)四大基本任务--分类、检测、定位、分割
明月光舞
计算机视觉计算机视觉目标检测深度学习
文章目录前言一、计算机视觉任务一:目标分类常用数据集常见网络结构二、计算机视觉任务二:目标定位三、计算机视觉任务三:目标检测常用数据集常见网络结构四、计算机视觉任务四:目标分割常用数据集常见网络结构前言计算机视觉(ComputerVision,CV)是一门研究如何让机器具备“看”的能力的学科,以人或动物的视觉能力为参照,通过计算机对视觉数据(图像、视频等)的处理、学习、推理判断,复现出、模拟出甚至
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
GSRA会务组房老师
计算机视觉人工智能数据挖掘图像处理目标检测云计算语言模型
2025年计算机视觉研究进展与应用国际学术会议(ACVRA2025)2025InternationalConferenceonAdvancesinComputerVisionResearchandApplications重要信息2025年3月28-30日南京一轮截稿日期:2024年12月26日EI检索稳定早投稿,早审稿,早录用【会议简介】2025年计算机视觉研究进展与应用国际学术会议(ACVRA2
- 【学术投稿-2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)】CSS样式解析:行内、内部与外部样式的区别与优先级分析
禁默
前端学术会议css前端
简介2025年计算机视觉研究进展与应用(ACVRA2025)将于2025年2月28-3月2日在中国广州召开,会议将汇聚世界各地的顶尖学者、研究人员和行业专家,聚焦计算机视觉领域的最新研究动态与应用成就。本次会议将探讨前沿技术,包括深度学习、多模态学习、图像和视频分析、3D重建等,以及其在智能交通、医疗影像、增强现实和自动化等多个实际应用中的创新转化。会议官网:www.acvra.org目录前言一、
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,