为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n n n 张地毯,编号从 1 1 1 到 n n n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入共 n + 2 n + 2 n+2 行。
第一行,一个整数 n n n,表示总共有 n n n 张地毯。
接下来的 n n n 行中,第 i + 1 i+1 i+1 行表示编号 i i i 的地毯的信息,包含四个整数 a , b , g , k a ,b ,g ,k a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 ( a , b ) (a, b) (a,b) 以及地毯在 x x x 轴和 y y y 轴方向的长度。
第 n + 2 n + 2 n+2 行包含两个整数 x x x 和 y y y,表示所求的地面的点的坐标 ( x , y ) (x, y) (x,y)。
输出共 1 1 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
3
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
-1
【样例解释 1】
如下图, 1 1 1 号地毯用实线表示, 2 2 2 号地毯用虚线表示, 3 3 3 号用双实线表示,覆盖点 ( 2 , 2 ) (2,2) (2,2) 的最上面一张地毯是 3 3 3 号地毯。
【数据范围】
对于 30 % 30\% 30% 的数据,有 n ≤ 2 n \le 2 n≤2。
对于 50 % 50\% 50% 的数据, 0 ≤ a , b , g , k ≤ 100 0 \le a, b, g, k \le 100 0≤a,b,g,k≤100。
对于 100 % 100\% 100% 的数据,有 0 ≤ n ≤ 1 0 4 0 \le n \le 10^4 0≤n≤104, 0 ≤ a , b , g , k ≤ 10 5 0 \le a, b, g, k \le {10}^5 0≤a,b,g,k≤105。
noip2011 提高组 day1 第 1 1 1 题。
所求的地毯的编号up初值为-1。从下到上遍历地毯,若所求点位于某张地毯内,则up记为地毯编号。
#include
#define AUTHOR "HEX9CF"
using namespace std;
int main()
{
int n;
cin >> n;
int carpet[n][5];
int x, y;
int up = -1;
for (int i = 0; i < n; i++)
{
// (a, b) (x, y)
cin >> carpet[i][0] >> carpet[i][1] >> carpet[i][2] >> carpet[i][3];
}
cin >> x >> y;
for (int i = 0; i < n; i++)
{
if ((x <= (carpet[i][2] + carpet[i][0])) && (x >= carpet[i][0]) &&
(y <= (carpet[i][3] + carpet[i][1])) && (y >= carpet[i][1]))
{
up = i + 1;
}
}
cout << up;
return 0;
}