TCP全称为 “传输控制协议(Transmission Control Protocol”). 人如其名, 要对数据的传输进行一个详细的控制
源端口,目的端口:OS给的,也就是我前面模拟基于tcp的应用层协议为什么要用16位端口号
16位校验和: 发送端填充, CRC校验. 接收端校验不通过, 则认为数据有问题. 此处的检验和不光包含TCP首部, 也包含TCP数据部分.
16位紧急指针: 这个指针指向了紧急数据最后一个字节的下一个字节
tcp协议是有标准长度的20字节,但是报头中可能含有选项,选项占一定字节,也就是说报头的长度是变化的,最小是20字节
当服务端收到报文后,转化成一个结构化的数据,就可以得到标准报头中的四位首部长度;
TCP约定:TCP报头总长度=四位首部长度*4字节
,因此TCP报头长度范围是[20,60]字节。
假设报头是20字节,那么首部长度就是5,即0101
基于上面两条,就可以得到选项的字节:四位首部长度*4-20
报头全部读取完毕,就可以得到有效载荷
TCP协议的解包参考以上,封装就是添加报头信息(同UDP),分用就是根据目的端口号,找到应用层对应的进程,交给它
收到的报文是如何找到曾经bind过的特定port进程的?
应用层维护一张port哈希表,当有端口号到来,就会查表找到对应进程PCB
网络传输中,因为距离变长,存在着不可靠问题,常见的不可靠场景有丢包、乱序、校验错误、重复等
TCP收发消息最基本的工作模式:发一个新消息给一件应答
双方再进行通信的时候,除了正常的数据段,还有可能带有确认数据段,对于确认数据段,不需要再次应答
确认应答&&确认序号:接收方已经收到了ACK序号之前的所有(真的报文且连续)报文
例如:ACK:14表示已经收到了14号报文之前的所有报文,下次从14开始发
TCP将每个字节的数据都进行了编号. 即为序列号
每一个ACK都带有对应的确认序列号, 意思是告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发
为什么要有两组序号?
这是因为TCP是全双工的,当Client向Server发送的时候,Client的序号与Server的确认序号为一组;Server也可以向Client发送,Server的序号与Client的确认序号又成为一组;如下图
前面我们说到,TCP协议有两个缓冲区:发送缓冲区和接收缓冲区,当双方进行通信的时候,需要把数据拷贝到缓冲区内,交给对方的接受缓冲区,对方再交付给上层。如果发送过快或者过慢,就会影响传输效率
在报头中有一个16位窗口大小的字段,供发送方使用,里面填写自己的接收缓冲区大小,正因为不知道对方的,才要填自己的,来获取对方的;构建的报文都是要发送给对方的,这样就就换了双方的接收缓冲区剩余大小,也就可以进行流量控制
由于窗口大小与缓冲区挂钩,所以一次只能发64KB的数据,如果想要扩容,需要研究“选项”字段,这里不做讨论
当报文中有紧急数据需要处理的时候(不是所有的有效载荷,是有效载荷的一部分),会将报头中urg标记位置为1,16位紧急指针作为偏移量指向有效载荷中的紧急数据的下一字节,TCP紧急指针指向的数据只能有一个字节,也就是说,根据偏移量找到数据后,只有一个字节的数据是紧急数据
TCP报文是有类型的,6位标记位就是来区分不同类型的报文
SYN: 同步标记位,默认为0,只有在建立连接的时候被置为1,三次挥手再详谈
FIN: 断开连接标记位,四次挥手详谈
ACK: 确认标记位,报文带有确认,就会将此标记为置1
PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走
URG: 紧急指针是否有效
RST: 复位标记位,对方要求重新建立连接; 我们把携带RST标识的称为复位报文段
当客户端和服务器建立连接、断开连接的时候,有可能会失败,即使成功,通信过程一方也可能会出问题;假设服务端出现问题断开重启,但是客户端并不知道,依旧发送报文,服务端就会发送相应报文,携带RST标记位,告诉客户端重新建立连接。同理,客户端如果断开,会给服务端发信息
第一种:主机A给主机B发送数据,但是没有到达主机B,经过特定的时间间隔没有收到来自B的确认应答,就会再次给B发送数据
第二种:
主机A给主机B发送数据,主机B收到了给A确认应答,但是A没有收到,在A看来与第一种一样,过段时间再次给B发送数据
A是根据时间间隔来判断是否丢包的!!!
前面说到,重复也是不可靠的一种,那么超时重传机制中B主机会收到重复数据,就会曾经提到过的序列号来去重
被发出的数据不会被立即移除(为了超时重传),需要收到应答才能移除
在前面我提到过:三次握手只是手段不是目的,也就是说,三次握手不一定会成功
在上图中三条报文前两条不用担心丢失(超时重传机制),需要考虑的是第三条报文丢失的情况
为什么需要三次握手?一次?两次?四次不可以吗?
一次:不可以
如果只需要一次握手,就会导致服务器收到来自同一个客户端多个链接,服务器需要维护这些链接,成本太高----SYN洪水
两次:不可以
1.二次握手的话可能出现第二条报文丢失的情况,导致客户端再给服务器发送连接请求,出现同上的问题
2.还有一种情况是第一条报文因为延迟长时间未到服务端,客户端再发一条报文与服务端建立连接进行通信,当断开连接的时候,之前的第一条报文到了,服务端就会给客户端发送带有ACK字段的报文,但是此时客户端已经断开连接了,这就会让服务端一直等待,造成资源浪费
三次:可行
1.通信之前,需要验证信道是全双工的,而三次握手就是用最小成本验证该信道是通畅的
第一条可以验证:客户端是可以发送的,服务端是可以收到的
第二条可以验证:客户端是可以收到的,(这里服务端虽然发送了,但是无法确认被客户端收到了)
第三条可以验证:服务端是可以发送的
2.三次握手可以有效防止单主机对服务器进行攻击(最后一条报文保证了客户端先建立好连接,然后服务器建立好连接);保证收到同等伤害
四次:可以,但没必要
1.三次握手已经最小成本建立成功了,四次就显得多余了
2.如果是四次握手,那么就会导致最后一条是服务端发送的,如果一直丢失,就会导致服务端连接一一直挂着,与两次握手一样有隐患
主动断开的一方,最终状态是TIME_WAIT状态
被动断开的一方,两次挥手完成后,会进入CLOSE_WAIT状态
由于TCP双方对等,主动、被动C/S都有可能
如果服务器出现了大量的close_wait原因有:
1.服务器存在bug,没有做close文件描述符
2.服务器有压力,可能一直推送消息给client,导致来不及close
当关闭服务器的时候,系统层面会去执行第三次第四次挥手,完成断开连接
四次挥手已经完成,主动断开的一方会维持一段时间的TIME_WAIT状态,等待两个MSL(maximum segment lifetime)的时间后才能回到CLOSED状态;我们使用Ctrl+C终止了server, 所以server是主动关闭连接的一方, 在TIME_WAIT期间仍然不能再次监听同样的server端口,也就不能绑定同样的端口
解决办法:添加地址复用
使用setsockopt()设置socket描述符的 选项SO_REUSEADDR为1, 表示允许创建端口号相同但IP地址不同的多个socket描述符
//设置地址复用
int opt=1;
setsockopt(listen_sockfd_,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));
为什么是TIME_WAIT的时间是2MSL?
接收端处理数据的速度是有限的. 如果发送端发的太快, 导致接收端的缓冲区被充满, 这个时候如果发送端继续发送,就会造成丢包, 继而引起丢包重传等等一系列连锁反应.因此TCP支持根据接收端的处理能力, 来决定发送端的发送速度. 这个机制就叫做流量控制(Flow Control)
在TCP三次握手阶段,完成窗口大小的交换,未来通信的时候就可以控制发送数据大小
前面我提到过:发送的数据未收到应答之前,会将数据暂时保存起来,而保存的位置就是发送缓冲区根据课本上讲的,可以将缓冲区分为以下几段
对上图进行抽象,可以处理成一个一维数组:而滑动窗口就是就是两个数组下标,滑动窗口的移动就是数据下标的更新
滑动窗口的大小如何设置?
滑动窗口大小和对方接受能力有关
滑动窗口会向左移动吗?一直向右移动吗?
不会向左,也不会一直向右移动,存在不动的情况
窗口会一直不变吗?会变大吗?会变小吗?依据是什么
不会一直不变,可能变大,可能变小;依据是对方接收缓冲区大小
如上图:当收到对方发来的确认序号的时候,滑动窗口start端会向右移动,如果接收方此时接受了但是没有取出,就会导致接收方缓冲区越来越小,也就导致了发送方窗口大小越来越小。
当越来越小缩小为0的时候,接收方把它接受缓冲区数据全拿走,这个时候发送方滑动窗口就会增大
收到应答确认的时候,如果不是最左端发送的报文的确认,而是中间的,结尾的该怎么办?要滑动吗?
以上存在两种丢包情况:
滑动窗口一直滑动,剩余空间不够了怎么办
滑动窗口其实被内核组织成环形结构
TCP连接的可靠性不仅考虑了主机之间的问题,也考虑了网络的问题
少量的丢包, 我们仅仅是触发超时重传; 大量的丢包, 我们就认为网络拥塞
如果网络比较拥堵,发送大量数据可能会引起大量丢包,TCP引入慢启动机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据
发送数据不仅要考虑点到点,还需要考虑网络状况:引入拥塞窗口,发送开始的时候, 定义拥塞窗口大小为1,指数级别的. “慢启动” 只是指初使时慢, 但是增长速度非常快.当拥塞窗口超过阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长
发送方---->网络---->接收方;
发送方拥有滑动窗口;网络拥有拥塞窗口;接受方有自己的窗口大小
滑动窗口大小取决于:MIN(拥塞窗口,接收方窗口大小)
拥塞控制, 归根结底是TCP协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案
如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.
如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;
窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么? 肯定也不是;
具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms,需要考虑超时重传机制
三次握手中服务端回复的时候SYN+ACK就是捎带应答,不是一问一答
创建一个TCP的socket, 同时在内核中创建一个发送缓冲区和一个接收缓冲区;
由于缓冲区的存在, TCP程序的读和写不需要一一匹配,:这就是面向字节流
首先要明确, 粘包问题中的 “包” , 是指的应用层的数据包.
在TCP的协议头中, 没有如同UDP一样的 “报文长度” 这样的字段, 但是有一个序号这样的字段.
站在传输层的角度, TCP是一个一个报文过来的. 按照序号排好序放在缓冲区中.
站在应用层的角度, 看到的只是一串连续的字节数据.
那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包.
如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
1.对于定长的包, 保证每次都按固定大小读取即可; 每次读取就从缓冲区从头开始按sizeof(包长)依次读取即可;
2.对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
3.对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔符不和正文冲突即可)
为什么TCP这么复杂? 因为要保证可靠性, 同时又尽可能的提高性能.
可靠性:校验和、序列号(按序到达)、确认应答、超时重发、连接管理、流量控制、拥塞控制
提高性能:滑动窗口、快速重传、延迟应答、捎带应答(流量控制、拥塞控制)
其他:定时器(超时重传定时器, 保活定时器, TIME_WAIT定时器等)
TCP协议要为上层维护一个链接队列,这个队列不能没有也不能太长,这个连接队列叫做全连接队列,相当于咱们日常吃饭排队等待
int listen(int sockfd, int backlog);
sockfd:表示要监听的套接字描述符。
backlog:指定在等待被接受的连接队列中允许的最大连接数。
TCP底层允许backlog+1个完整链接,后续来的都只能是半连接状态,即三次握手中的SYN_RCVD状态 ,并添加到半连接队列,如果后续还没完成连接,就会被Server关闭,转变为close_wait状态
Linux内核协议栈为一个tcp连接管理使用两个队列:
区别全连接队列中的连接和已建立好的连接:就像是排队等待的人和已经进入饭店吃饭的人;这个队列相当于一个连接缓冲区,上层服务完毕的时候可以从缓冲区取出新连接