AI Chat 设计模式:11. 状态模式

本文是该系列的第十一篇,采用问答式的方式展开,问题由我提出,答案由 Chat AI 作出,灰色背景的文字则主要是我的一些思考和补充。

问题列表

  • Q.1 你知道状态模式吗
  • A.1
  • Q.2 它与有限状态机有什么联系吗?
  • A.2
  • Q.3 知道了,我是第一次学习状态模式,你能由浅入深给我讲解一下吗
  • A.3
  • Q.4 状态模式中,状态的切换应该放到具体状态类里还是上下文类里呢
  • A.4
  • Q.5 上面的例子不错,就是给我换成c++语言吧
  • A.5
  • Q.6 有一个问题,这些状态每次都是 new 出来的,但我却没看见它们在哪里销毁
  • A.6
  • Q.7 如果不使用智能指针呢
  • A.7
  • Q.8 明白,现在每次切换状态都要删除老的状态类,创建新的状态类,如此的反复创建、销毁,有办法改进吗
  • A.8
  • Q.9 不错,最后需要你对状态模式做一个全面的总结
  • A.9

Q.1 你知道状态模式吗

A.1

是的,我知道状态模式。状态模式是一种行为设计模式,它允许对象在不同的内部状态下改变其行为。在状态模式中,对象的行为取决于其状态,并且可以在运行时更改对象的状态。

状态模式包括三个主要角色:上下文(Context)、状态接口(State)和具体状态(Concrete State)。上下文是包含状态的对象,并将请求委派给当前状态处理。状态接口定义了所有具体状态必须实现的方法。具体状态是实现状态接口的具体类,每个具体状态负责处理特定的请求。

使用状态模式可以实现将复杂的条件语句转换为清晰的状态类,提高代码的可维护性和可扩展性。状态模式常用于需要根据对象内部状态改变行为的情况,例如状态机、游戏状态管理等。

Q.2 它与有限状态机有什么联系吗?

A.2

状态模式和有限状态机(FSM,Finite State Machine)之间存在一定联系,但它们是不同的概念。

有限状态机是一种数学模型,用于描述对象、系统或者程序的状态以及状态之间的转换。它由一组状态事件转移条件组成,当满足特定的条件时,会发生状态之间的转移。有限状态机可以是确定的(确定性有限状态机)或者非确定的(非确定性有限状态机),并可以用于解决不同的问题,如自动控制、编译器设计等。

而状态模式是一种软件设计模式,它用于将对象的行为与其内部状态相关联。对象在不同的状态下可以具有不同的行为,而状态模式允许对象在运行时根据状态的变化而改变其行为。与有限状态机不同,状态模式更关注对象的内部状态和行为之间的关系。

尽管状态模式和有限状态机都涉及到状态和状态之间的转换,但它们的关注点和应用领域有所不同。状态模式更加注重对象的内部行为和状态之间的关系,而有限状态机更关注的是问题的建模和状态转换过程。

一般认为状态模式是状态机的一种实现方式。

状态机由状态事件动作三部分组成。事件是触发状态转移的条件或原因,动作是进入该状态后产生的行为。当事件发生时,会根据当前状态作出动作,然后进入下一状态。
我们简单举一个倒霉大学生的例子,以毕业了为初始状态,“找到工作了”这一事件发生后,他会进入“兴奋”状态,此时他可能会产生“吃顿好的”这个动作(图里并未画出);有一天发生了“被老板骂”这一事件,他进入了“低落状态”,在该状态下会作出什么动作呢?忍了,或者硬刚,或者啥也不做(状态转换后,不一定有动作发生);过了一阵子,他被炒了,“失业”这一事件导致他进入了“沮丧”状态;再后来,“老婆跑了”,这一事件直接让他进入了“绝望”状态;然后又发生了一些事,这个大学生进入了“无”的状态。
如果想更多了解状态机,就需要去专门学习一下相关文章了,这里只是简单介绍。
AI Chat 设计模式:11. 状态模式_第1张图片

Q.3 知道了,我是第一次学习状态模式,你能由浅入深给我讲解一下吗

A.3

当然可以!我可以帮你由浅入深地理解状态模式。

状态模式的核心思想是将对象的行为和状态分离,通过定义不同的状态类来管理对象的状态并实现相应的行为。这使得对象的行为可以根据状态的变化而灵活改变,同时也减少了大量的条件语句,提高了代码的可读性和可维护性。

让我们以一个简单的示例来说明状态模式的使用。

假设我们要设计一个电梯系统,其中电梯可以处于三种状态:关闭状态开启状态运行状态。不同状态下,电梯的行为是不同的。

首先,我们创建一个状态接口(State),该接口定义了所有具体状态类必须实现的方法,比如opencloserun等方法。

public interface State {
    void open();
    void close();
    void run();
}

open()、close()、run() 这三个方法,定义了电梯的三个行为,同时也是我们前面提到的状态转移条件(事件)。

然后,我们创建具体的状态类,分别是OpenStateCloseStateRunState,它们实现了状态接口,负责实现对应状态下的行为。

public class OpenState implements State {
    @Override
    public void open() {
        System.out.println("电梯已经是开启状态,无需再次开门");
    }

    @Override
    public void close() {
        System.out.println("电梯关闭门");
        // 切换到关闭状态
        context.setState(new CloseState());
    }

    @Override
    public void run() {
        System.out.println("电梯正在运行,无法切换到运行状态");
    }
}

public class CloseState implements State {
    @Override
    public void open() {
        System.out.println("电梯开门");
        // 切换到开启状态
        context.setState(new OpenState());
    }

    @Override
    public void close() {
        System.out.println("电梯已经是关闭状态,无需再次关闭");
    }

    @Override
    public void run() {
        System.out.println("电梯开始运行");
        // 切换到运行状态
        context.setState(new RunState());
    }
}

public class RunState implements State {
    @Override
    public void open() {
        System.out.println("电梯在运行中,无法开门");
    }

    @Override
    public void close() {
        System.out.println("电梯关门");
        // 切换到关闭状态
        context.setState(new CloseState());
    }

    @Override
    public void run() {
        System.out.println("电梯已经是运行状态,无需再次运行");
    }
}

接下来,我们创建一个上下文类(Context),它包含了一个当前状态的引用,并提供对外的操作方法。

public class Context {
    private State currentState;

    public Context() {
        // 默认初始状态是关闭状态
        currentState = new CloseState();
    }

    public void setState(State state) {
        currentState = state;
    }

    public void open() {
        currentState.open();
    }

    public void close() {
        currentState.close();
    }

    public void run() {
        currentState.run();
    }
}

发现没有,上下文类里也有open()、close()、run()这三个方法,它并不自己实现,而是直接调用状态对象的同名方法。简单说,我们将上下文本该自己实现的方法放到了状态类里来实现,当然,这些方法的行为得受到状态的影响,不同状态下行为不同。

最后,我们可以使用上述的状态模式来模拟电梯的行为。

public class Main {
    public static void main(String[] args) {
        Context context = new Context();

        context.open();  // 输出:"电梯开门"
        context.close();  // 输出:"电梯关闭门"
        context.run();  // 输出:"电梯开始运行"
        context.run();  // 输出:"电梯已经是运行状态,无需再次运行"
        context.open();  // 输出:"电梯在运行中,无法开门"
        context.close();  // 输出:"电梯关门"
        context.open();  // 输出:"电梯关闭门"
    }
}

通过上述示例,我们可以看到电梯根据不同的状态执行了相应的行为,而这些状态和行为的切换是相对灵活的。

这里,状态转换是在具体状态类中进行的,在严格的状态模式定义中,状态切换就是放在具体状态类中,这样的缺点是状态类之间有耦合,好处就是上下文里不用管状态的切换了。但也并不是只能如此。

Q.4 状态模式中,状态的切换应该放到具体状态类里还是上下文类里呢

A.4

在状态模式中,状态的切换可以放到具体状态类里,也可以放到上下文类里,具体取决于具体应用的需求和设计的考虑。

如果状态的变化是由外部条件驱动的,如用户的操作、外部事件等,那么通常将状态切换的逻辑放到上下文类中更为合适。上下文类可以根据外部条件来决定状态转换的时机,并调用具体状态类的方法来进行状态切换。

如果状态的变化是由内部条件驱动的,即状态类自身的逻辑或标记决定了状态的切换,那么将状态切换的逻辑放到具体状态类中更为合适。具体状态类知道自己的状态和状态转换的规则,可以自主地改变上下文对象的状态。

需要注意的是,无论状态的切换逻辑放在哪里,上下文对象和具体状态类之间都需要有适当的通信机制,以便完成状态切换后的行为执行。

综上所述,根据具体的应用需求和设计考虑,可以将状态的切换逻辑放到具体状态类或上下文类中。这也是状态模式的灵活性之一,可以根据不同的情况进行具体的设计选择。

希望这个解答对你有帮助。如果还有其他问题,请随时提问。

Q.5 上面的例子不错,就是给我换成c++语言吧

A.5

当然,没有问题!这是一个使用C++语言实现状态模式的电梯示例:

#include 

// 前向声明
class Context;

// 状态基类
class State {
public:
    virtual void open(Context* context) = 0;
    virtual void close(Context* context) = 0;
    virtual void run(Context* context) = 0;
};

// 具体状态类:开启状态
class OpenState : public State {
public:
    void open(Context* context) override {
        std::cout << "电梯已经是开启状态,无需再次开门" << std::endl;
    }

    void close(Context* context) override {
        std::cout << "电梯关闭门" << std::endl;
        // 切换到关闭状态
        context->setState(new CloseState());
    }

    void run(Context* context) override {
        std::cout << "电梯正在运行,无法切换到运行状态" << std::endl;
    }
};

// 具体状态类:关闭状态
class CloseState : public State {
public:
    void open(Context* context) override {
        std::cout << "电梯开门" << std::endl;
        // 切换到开启状态
        context->setState(new OpenState());
    }

    void close(Context* context) override {
        std::cout << "电梯已经是关闭状态,无需再次关闭" << std::endl;
    }

    void run(Context* context) override {
        std::cout << "电梯开始运行" << std::endl;
        // 切换到运行状态
        context->setState(new RunState());
    }
};

// 具体状态类:运行状态
class RunState : public State {
public:
    void open(Context* context) override {
        std::cout << "电梯在运行中,无法开门" << std::endl;
    }

    void close(Context* context) override {
        std::cout << "电梯关门" << std::endl;
        // 切换到关闭状态
        context->setState(new CloseState());
    }

    void run(Context* context) override {
        std::cout << "电梯已经是运行状态,无需再次运行" << std::endl;
    }
};

// 上下文类
class Context {
public:
    Context() {
        // 默认初始状态是关闭状态
        currentState = new CloseState();
    }

    void setState(State* state) {
        currentState = state;
    }

    void open() {
        currentState->open(this);
    }

    void close() {
        currentState->close(this);
    }

    void run() {
        currentState->run(this);
    }

private:
    State* currentState;
};

int main() {
    Context context;

    context.open();  // 输出:"电梯开门"
    context.close();  // 输出:"电梯关闭门"
    context.run();  // 输出:"电梯开始运行"
    context.run();  // 输出:"电梯已经是运行状态,无需再次运行"
    context.open();  // 输出:"电梯在运行中,无法开门"
    context.close();  // 输出:"电梯关门"
    context.open();  // 输出:"电梯关闭门"

    return 0;
}

在C++的实现中,我们使用了类和虚函数来表示状态和行为,实现了上下文类以及具体状态类。通过创建具体状态类的对象并切换状态,来模拟电梯的行为。

希望这个例子能帮助你更好地理解状态模式的使用!如果有任何问题,请随时向我提问。

Q.6 有一个问题,这些状态每次都是 new 出来的,但我却没看见它们在哪里销毁

A.6

这是一个很好的问题!在这个示例中,确实没有明确的地方将状态对象销毁。在实际应用中,可能需要在适当的时机销毁状态对象,以便释放内存和管理资源。

在状态模式中,通常有以下几种方式来处理状态对象的销毁:

  1. 手动销毁:在合适的时机手动删除状态对象。例如,在上下文类的析构函数中释放状态对象的内存。
  2. 使用智能指针:可以使用C++智能指针来管理状态对象的生命周期。例如,可以使用std::unique_ptr来持有状态对象,并且在需要切换状态时,更新智能指针指向的对象。

这里是一种使用智能指针的示例代码:

// 上下文类
class Context {
public:
    Context() {
        // 默认初始状态是关闭状态
        currentState = std::make_unique<CloseState>();
    }

    void setState(std::unique_ptr<State> state) {
        currentState = std::move(state);
    }

    // ...

private:
    std::unique_ptr<State> currentState;
};

使用智能指针可以自动管理状态对象的生命周期,无需手动调用delete来释放内存。

记住,在使用智能指针时,需要确保在涉及到多个类之间的所有权传递时,正确地使用std::move()来转移所有权。

希望这个解答能解决你的疑问!如果还有其他问题,请随时提问。

Q.7 如果不使用智能指针呢

A.7

如果不使用智能指针,你可以手动管理状态对象的生命周期。这意味着你需要在适当的时候手动创建和销毁状态对象。

下面是一个示例代码,展示了如何手动管理状态对象的生命周期:

// 上下文类
class Context {
public:
    Context() {
        // 默认初始状态是关闭状态
        currentState = new CloseState();
    }

    void setState(State* state) {
        delete currentState; // 销毁当前状态对象
        currentState = state;
    }

    ~Context() {
        delete currentState; // 在销毁上下文对象时,销毁当前状态对象
    }

    // ...

private:
    State* currentState;
};

在这个示例中,我们使用了new来创建状态对象,并在需要切换状态时使用delete来销毁先前的状态对象。在上下文类的析构函数中,我们也进行了一次对象销毁

但需要注意的是,手动管理生命周期需要确保在正确的时机销毁对象,并避免出现内存泄漏或错误的删除对象的情况。在实际项目中,请谨慎使用并仔细考虑对象所有权的管理。

将状态对象的释放在了setState() 方法中,每次先删除旧状态。

Q.8 明白,现在每次切换状态都要删除老的状态类,创建新的状态类,如此的反复创建、销毁,有办法改进吗

A.8

是的,如果在状态切换过程中频繁创建和销毁状态对象,可能会导致性能问题。为了改进这个情况,可以考虑使用对象池(Object Pool)模式。

对象池模式是一种创建和维护对象池的设计模式,它可以重复使用已经创建的对象,而不是频繁地创建和销毁对象。通过对象池,可以减少对象创建和销毁的开销,提高性能。

下面是一个简化的示例代码,展示了如何使用对象池模式来管理状态对象:

// 对象池类
class ObjectPool {
public:
    ObjectPool() {
        // 初始化对象池,创建一定数量的状态对象
        for (int i = 0; i < POOL_SIZE; ++i) {
            pool.push(new State());
        }
    }

    State* acquireState() {
        if (pool.empty()) {
            // 如果对象池为空,可以选择扩展对象池大小或者返回一个默认的状态对象
            return new State();
        }
        else {
            State* state = pool.top();
            pool.pop();
            return state;
        }
    }

    void releaseState(State* state) {
        pool.push(state);
    }

private:
    std::stack<State*> pool;
    static const int POOL_SIZE = 10; // 对象池的大小,可以根据需求调整
};

// 上下文类
class Context {
public:
    Context() {
        // 默认初始状态是关闭状态
        currentState = objectPool.acquireState();
    }

    void setState(State* state) {
        objectPool.releaseState(currentState); // 释放先前的状态对象
        currentState = state;
    }

    ~Context() {
        objectPool.releaseState(currentState); // 在销毁上下文对象时,释放当前状态对象
    }

    // ...

private:
    State* currentState;
    static ObjectPool objectPool; // 共享的对象池
};

ObjectPool Context::objectPool; // 静态成员变量需要在类外进行定义

在这个示例中,我们创建了一个对象池(ObjectPool),它在初始化时创建了一定数量的状态对象,并提供了acquireStatereleaseState方法来获取和释放状态对象。

在上下文类(Context)中,通过调用acquireState方法来获取状态对象,并在需要切换状态时使用releaseState方法来释放先前的状态对象。这样可以重复使用对象,减少了创建和销毁的开销。

使用对象池模式可以改善频繁创建和销毁状态对象的性能问题。然而,需要根据具体的应用场景和需求来决定对象池的大小,以及在对象池不足时的处理方式。

现在切换状态时,不是直接 new 一个状态对象了,而是从对象池获取。
销毁旧状态对象时,其实并没有真正销毁,只是放回来对象池。

这个例子是有一定问题的,比如 acquireState() 方法应该加个参数,从而能获取不同的状态对象,例子里显然不能做到这一点。

记住优化思路就行了,就是将所有状态对象的创建和销毁交给另一个类来管理,切换状态时不再直接创建和销毁状态对象。

Q.9 不错,最后需要你对状态模式做一个全面的总结

A.9

状态模式是一种行为型设计模式,它允许对象在其内部状态发生改变时改变其行为。该模式将对象的状态封装成独立的状态类,使得状态的变化可以彼此替换而不影响使用状态的对象。通过使用状态模式,可以实现状态转换和行为的解耦,使得代码更加可维护、可扩展和可复用。

主要角色:

  1. 上下文(Context):上下文是包含了状态对象的环境类。它定义了一个接口,用于客户端和具体状态类之间的交互。
  2. 抽象状态(State):抽象状态是一个接口或抽象类,定义了具体状态类需要实现的方法,并且为上下文对象提供一个统一的接口。
  3. 具体状态(Concrete State):具体状态是抽象状态的具体实现,它根据上下文的状态变化来改变自己的行为。

工作原理:

  1. 定义状态:首先,需要识别对象的状态以及每个状态的行为。将每种状态都抽象成一个独立的状态类。
  2. 建立上下文:创建一个上下文类,它包含一个指向当前状态的引用,并提供可以触发状态转换和执行对应行为的方法。
  3. 实现状态:为每个状态实现相应的行为方法,并在需要时,从一个状态切换到另一个状态。

优点:

  1. 将状态转换的逻辑从上下文对象中分离出来,使得代码更加可读、可维护和可扩展。
  2. 将状态行为封装在独立的状态类中,可实现状态的复用,并且可以方便地添加新的状态。
  3. 减少了使用条件语句进行状态判断的情况,使得代码更加简洁和易于理解。

适用场景:

  1. 当一个对象的行为取决于其内部状态,并且需要在运行时根据状态改变行为时,可以考虑使用状态模式。
  2. 当对象具有大量重复的条件语句,以便根据不同的状态执行不同的行为时,可以使用状态模式简化代码结构。

总结起来,状态模式通过将状态封装成独立的状态类,使得状态的变化可以彼此替换而不影响使用状态的对象。它提供了一种可扩展、可维护和可复用的解决方案,能够简化代码结构,并将状态行为与上下文对象的交互进行解耦。

希望这个总结对你有帮助。如果还有任何问题,请随时提问。

你可能感兴趣的:(设计模式,设计模式,c++,Chat,AI,状态模式)