深度理解STM32的串口实验(寄存器)【保姆级教程】

USART—通用同步异步收发接收器,是一个串行通信设备,可以和外部设备进行灵活的全双工数据交换,有别于USART还有一个UART(在原来的基础上裁剪掉了同步通信功能(时钟同步)),串行通信一般是以帧格式传输数据,一帧一帧的传。

协议层: 串口通信的一个数据包包含从起始信号开始,直到停止信号的结束

起始信号:一个逻辑0数据位表示。

停止信号:0.5,1,1.5或2个逻辑1的数据位表示。

0.5个停止位:智能卡模式下的接收数据时使用。

1个停止位:停止位的默认数值

1.5个停止位:智能卡模式下的手法数据和接收数据时使用

2个停止位:常规USART模式,单线模式以及调制解调器的模式。

有效数据的基本长度被约定为5,6,7,8.

奇偶检验(设置USART-CR1 的PS位)

偶检验:数据=00110101,里面数据1的个数位为偶数位,检验位置“0”,当数据检验和偶数相同的时候,证明没有出错,反之则错误

奇检验:数据 = 01110101,里面数据1的个数为奇检位,检验位置“1”,当数据检验和奇数相同,则证明没有出错,反之错误。

当然也会存在同时两个位一块出现错误,导致无法判断是否位奇偶检验的错误,但发生的概率很低。

下面这张图需要重点理解

深度理解STM32的串口实验(寄存器)【保姆级教程】_第1张图片

 下面是对代码的理解:

深度理解STM32的串口实验(寄存器)【保姆级教程】_第2张图片

 首先先看这个图,,可以看出USART_RX_STA类似与一个16位的寄存器,前14位存储的是数据,后面两个分别检测0X0D和0X0A。

接下里分析:

void uart_init(u32 pclk2,u32 bound)
{  	 
	float temp;
	u16 mantissa;                
	u16 fraction;	   
	temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV
	mantissa=temp;				 //得到整数部分
	fraction=(temp-mantissa)*16; //得到小数部分	 
    mantissa<<=4;
	mantissa+=fraction; 
	RCC->APB2ENR|=1<<2;   //使能PORTA口时钟  
	RCC->APB2ENR|=1<<14;  //使能串口时钟 
	GPIOA->CRH&=0XFFFFF00F;//IO状态设置
	GPIOA->CRH|=0X000008B0;//IO状态设置 
	RCC->APB2RSTR|=1<<14;   //复位串口1
	RCC->APB2RSTR&=~(1<<14);//停止复位	   	   
	//波特率设置
 	USART1->BRR=mantissa; // 波特率设置	 
	USART1->CR1|=0X200C;  //1位停止,无校验位.
#if EN_USART1_RX		  //如果使能了接收
	//使能接收中断 
	USART1->CR1|=1<<5;    //接收缓冲区非空中断使能	    	
	MY_NVIC_Init(3,3,USART1_IRQn,2);//组2,最低优先级 
#endif
}

temp=(float)(pclk2*1000000)/(bound*16);这是一个计算公式,因为使能的是串口1,而串口1是在APB2ENR寄存器里面(其余串口均在寄存器APB1ENR里面),因为APB2的频率一般位72M,而APB1的频率一般位36M。

 所以这里的pclk2为72M,而bound是你需要设置的波特率。

USARTX-BRR:

深度理解STM32的串口实验(寄存器)【保姆级教程】_第3张图片

前四位为小数部分 ,后12位是整数部分,假设算出来的mantissa = 39.5,小数部分相当于把1分成了16份,所以相当于把0.5*16转化为二进制存入。

mantissa = temp的作用仅仅是:为了接下来将小数部分求出来

    fraction=(temp-mantissa)*16; //得到小数部分	 
    mantissa<<=4;

这两行代码是为将十进制的整数部分和小数部分,分别转化为16进制。然后存入到波特率寄存器里面。紧接着使能串口1和PORTA时钟(串口一对应的IO口是PA9,PA10,需要拿跳帽连接在一起).

然后将IO口置零,然后分别进行设置成一个输入一个输出,

USART1->CR1|=0X200C;     设置成使能串口8个字长1个停止位(USART_CR2中[13:12]默认为“0”)

MY_NVIC_Init(3,3,USART1_IRQn,2)

将其分在组2里面,此时的抢占优先级:响应优先级为 = 2:2,即(00-11)四种情况,而3:3的安排选择了组2优先级最小的一种情况。这样可以先执行上面的波特率赋值,以及串口使能等等操作,最后再进行这行代码运行。

接下来看下一部分:

u16 USART_RX_STA=0;       //接收状态标记	  
  
void USART1_IRQHandler(void)
{
	u8 res;	
#if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
	OSIntEnter();    
#endif
	if(USART1->SR&(1<<5))	//接收到数据
	{	 
		res=USART1->DR; 
		if((USART_RX_STA&0x8000)==0)//接收未完成
		{
			if(USART_RX_STA&0x4000)//接收到了0x0d
			{
				if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
				else USART_RX_STA|=0x8000;	//接收完成了 
			}
			else //还没收到0X0D
			{	
				if(res==0x0d)USART_RX_STA|=0x4000;
				else
				{
					USART_RX_BUF[USART_RX_STA&0x3fff]=res;
					USART_RX_STA++;
					if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  
				}		 
			}
		}  		 									     
	}

起始阶段: USART_RX_STA=0,对接受状态的标记。

先通过状态寄存器SR的RXNE是否为1,是1则接收到了数据,反之则没有。紧接这定义一个res变量来接收从数据寄存器的一个字节,然后此时USART_RX_STA为0,与0X8000进行&运算,结果为0,则未接受到,接着继续进行判断,0X4000进行与运算,看是否为0,也是判断是否接受道路0X0D,如果没有接受到,则将这个res变量存放在数组里面,此时的USART_RX_STA为 0 与0X3fff进行&运算,大家算算会发现,因为他的前14位是数据位,所以你会发现第一个变量就会存放在BUF[0]里面,大概逻辑是这样的:

深度理解STM32的串口实验(寄存器)【保姆级教程】_第4张图片

所以每个字节都会被存放到具体的数组位上 。

if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收

当数组越界的时候,则会重新开始。

接下来就会一直循环,当数据位存满后,接下来res里面接受的就是0X0D,先和上面一样判断USART_RX_STA是否接受到了0X0A和0X0D。

接着执行:

if(res==0x0d)USART_RX_STA|=0x4000;

USART_RX_STA的第十五位变为1,,接下来进行下一次循环,这一次res接受到的值为0X0A,

然后进行判断进入到

       if(USART_RX_STA&0x4000)//接收到了0x0d
			{
				if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
				else USART_RX_STA|=0x8000;	//接收完成了 
			}

所以执行USART_RX_STA|=0x8000,使得USART_RX_STA的第十六位变为1。

接下来看主函数部分:

int main(void)
{			
	u8 t;
	u8 len;	
	u16 times=0;  
	Stm32_Clock_Init(9); //系统时钟设置
	delay_init(72);	     //延时初始化 
	uart_init(72,9600);	 //串口初始化为9600 
	LED_Init();		  	 //初始化与LED连接的硬件接口    
	while(1)
	{
		if(USART_RX_STA&0x8000)
		{					   
			len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度
			printf("\r\n您发送的消息为:\r\n");
			for(t=0;tDR=USART_RX_BUF[t];
				while((USART1->SR&0X40)==0);//等待发送结束
			}
			printf("\r\n\r\n");//插入换行
			USART_RX_STA=0;
		}else
		{
			times++;
			if(times%5000==0)
			{
				printf("\r\nALIENTEK MiniSTM32开发板 串口实验\r\n");
				printf("正点原子@ALIENTEK\r\n\r\n\r\n");
			}
			if(times%200==0)printf("请输入数据,以回车键结束\r\n");  
			if(times%30==0)LED0=!LED0;//闪烁LED,提示系统正在运行.
			delay_ms(10);   
		}
	}	 
}

if(USART_RX_STA&0x8000)                 判断是否接收到了0X0A

len=USART_RX_STA&0x3fff;举个简单的例子此时USART_RX_STA为1100000000000011和0X3fff进行&运算,得到的结果是3,自然就表示了当前数组的大小。

最后阶段,重点理解以下两行代码:

USART1->DR=USART_RX_BUF[t];
while((USART1->SR&0X40)==0);//等待发送结束

分析如下:将每个组内的信息存入到数据寄存器,此时数据寄存器将数据给TDR,发送信息的时候,是一位一位发送的,每一数据帧都有起始位,数据位,以及停止位,当检测到数据寄存器的细信息发送完了(完全给了TDR),此时状态寄存器的TXE便变为1,当检测到TXE为1后,TC也会变为1(系统自动进行)。所以第二行才会检测这个状态寄存器的第6位是否为1来判断是否发送成功了这个字节

由此推出,直接判断TXE也可以判断发送是否完成

所以代码可以改为:

        for(t=0;tDR=USART_RX_BUF[t];
				while((USART1->SR&0X80)==0);//等待发送结束
			}

你可能感兴趣的:(stm32,单片机,arm)