- 探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
羑悻的小杀马特.
AI学习科技deepseekAI大模型
DeepSeekR1模型功能强大,应用广泛。在自然语言处理、计算机视觉、推荐系统和医疗等领域都能发挥作用。本文介绍了其在各领域的应用场景和代码示例,助你深入了解它。目录编辑一、本篇背景:二、DeepSeekR1模型概述:2.1模型特点:2.2技术原理:三、自然语言处理领域的应用:3.1文本分类:3.1.1应用场景:3.1.2代码演示:3.2情感分析:3.2.1应用场景:3.2.2代码演示:3.3机
- 从取代到增强:AI如何与人类协作,共同创造未来
海棠AI实验室
人工智能理论与学术深度学习人工智能
人工智能(AI)的飞速发展正在改变全球各行各业。它不仅承诺提高效率、加速创新,还带来了前所未有的可能性。然而,随着这一技术的崛起,许多人开始担心:AI是否会取代人类?这个疑问在很多传统上被认为是“人类专属”的领域中尤为突出,尤其是在创意、决策和情感交流等方面。但如果我们将AI的发展方向从“取代”转向“增强”呢?如果我们将AI视为人类的强大协作伙伴,而不是冷冰冰的竞争对手,会有什么样的未来?这是我们
- 社交媒体文章内容与评论抓取:Python 爬虫实战教程
Python爬虫项目
2025年爬虫实战项目媒体python爬虫
社交媒体平台是全球信息交流的重要渠道,成千上万的文章、评论和动态每天都在各大平台上发布。这些数据包含了丰富的用户行为、意见和情感分析的潜力,因此抓取社交媒体平台上的文章内容与评论已成为数据分析、市场研究和情感分析等领域的重要任务。本篇教程将为大家详细介绍如何使用Python编写爬虫,抓取社交媒体平台(如微博、Twitter、Facebook等)的文章内容和评论。我们将涵盖如何使用现代爬虫技术,包括
- Python爬虫实战教程——如何抓取社交媒体用户信息(以Twitter和Instagram为例)
Python爬虫项目
2025年爬虫实战项目python爬虫媒体开发语言信息可视化
1.引言社交媒体平台如Twitter和Instagram每天都会生成大量的用户内容,包括文本、图片、视频等。对于数据分析师和研究人员来说,抓取社交媒体平台的数据是进行趋势分析、情感分析、用户行为分析等工作的基础。本文将介绍如何通过Python爬虫技术抓取Twitter和Instagram的用户信息。我们将详细探讨如何使用最新的技术栈和API来实现社交媒体数据的抓取,并结合具体的代码示例,帮助您快速
- 从数据到情感:全维度解析哪吒2的212亿票房之战
数据分析
综合目前的数据来看,我分析一下哪吒2的最终票房和冲击第一名可能性。当前态势:票房现状说明目前票房:110亿国内贡献:90%以上(约108亿)海外表现:仅2300万已上映:春节档15天左右三条预测路径分析(含日均计算)A.基础预测线(160-170亿)目标缺口:50-60亿时间周期:45天具体路径:第一阶段(15天)日均要求:2亿阶段贡献:30亿工作日表现:1.5亿/天周末表现:3亿/天第二阶段(1
- 如何打造品牌忠诚度?这5大策略让顾客成为你的“铁杆粉丝”
人工智能ai开发自然语言处理
在流量红利见顶的今天,留住一个老客户比获取新客户更具商业价值。品牌忠诚度不仅是重复消费的代名词,更是消费者与品牌建立情感连接、主动传播口碑的信任纽带。本文将揭秘中国市场中构建品牌忠诚度的实战方法论。一、品牌忠诚度从“交易关系”到“情感共鸣”品牌忠诚度意味着消费者在众多选择中始终偏爱你的品牌,这种偏爱建立在品质信任、情感认同和价值观契合的基础上。例如,小米通过“参与感”让用户成为产品共创者,海底捞以
- 天童美语:社交能力决定幸福感
消息快传
其他
我们常常追求物质生活的丰富和经济的稳定,认为这是幸福感的来源。然而,心理学家们研究发现,与稳定的经济支持相比,孩子的幸福感往往更多地来自于社交。哈尔滨天童教育今天带大家聊聊,社交究竟拥有怎样的力量,让人感受到幸福?社交能力使人感受到归属感。作为群居动物,人类天生就有与他人建立联系的需求。在社交互动中,我们寻找志同道合的朋友,共同分享生活的喜怒哀乐。这种彼此关心、互相支持的情感纽带,让我们感受到自己
- 清影2.0(AI视频生成)技术浅析(二):自然语言处理
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能音视频AIGC深度学习机器学习
清影2.0(AI视频生成)中的自然语言处理(NLP)技术是其核心组件之一,负责将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成过程。一、基本原理1.目标清影2.0的NLP技术旨在将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成。具体目标包括:1.深度语义理解:理解文本的语义、情感、意图等深层次信息。2.上下文关联:捕捉文本中词语之间、句子之间
- 使用OpenAI API进行文本分类标注
dgay_hua
人工智能python
技术背景介绍文本分类标注(Tagging)是一种非常有用的技术,可以对文档进行分类,例如情感分析、语言检测、风格判断、主题识别等。这项技术在自然语言处理(NLP)领域中有广泛的应用,例如社交媒体监控、客户反馈分析和自动化客服系统等。在本文中,我们将使用OpenAI的API,通过LangChain工具来进行文本分类标注。我们将展示如何定义分类函数和模式(schema),并通过实际代码演示实现文本分类
- 【DeepSeek变现】普通人怎么用deepseek捞到第一桶金
深度求索者
大数据人工智能
对于普通人而言,利用DeepSeek赚取第一桶金的核心在于结合AI工具的高效性与市场需求,聚焦轻资产、低门槛的变现路径。以下是基于实际案例和行业动态总结的可行方案:一、内容创作与流量变现(低成本创业首选)核心逻辑:通过DeepSeek生成高质量内容,快速吸引流量并实现广告、带货或知识付费收入。落地路径:短视频/图文矩阵:使用DeepSeek批量生成短视频脚本(如情感故事、生活技巧类),搭配剪映等工
- GAEA的技术架构与系统集成 撸空投
空投小白
人工智能区块链去中心化ai网络
为构建AI情感数据层,GAEA整合了DePIN网络、GODHOODID和情感坐标系三大核心组件,有效、安全地整合用户数据,确保数据处理透明、高效、去中心化。架构如下:DePIN网络:这种去中心化基础设施为安全数据传输和存储提供了强大的解决方案,确保了用户数据的安全性、隐私性和完整性。通过利用基于区块链的协议,DePIN网络可确保数据不会被篡改,并能抵御集中化风险。GODHOODID:作为情绪坐标系
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- 今晚直播,DeepSeek真的有意识了吗?|DeepSeek十日谈
CSDN资讯
人工智能
你是否曾凝视着ChatGPT,好奇Ta是否真的“听懂”了你的指令?你是否在科幻电影中,思考过机器人真的拥有情感吗?你是否惊讶于DeepSeek的分析过程,好奇它到底是「推理」还只是模拟人类思考的假象?这里不禁思考:AI是否真的有意识?在科幻巨著《云球》中,作者描绘了一个惊心动魄的未来——AI不再只是工具,而是拥有自我意识的存在。它们不仅能思考,还能创造,甚至形成自己的文明。书中预言,当AI的认知能
- Windows 11 新表情符号:为数字交流增添更多色彩
xueyunshengling
微软合作伙伴计划微软精华知识宝箱windows系统功能Win11Windows11新增功能win11
在当今数字化的交流时代,表情符号已经成为我们日常沟通中不可或缺的一部分。它们能够以简洁而生动的方式传达情感、态度和意图,让文字交流变得更加丰富多彩。而Windows11的推出,为我们带来了全新的表情符号体验,进一步提升了数字交流的趣味性和表达力。Windows11的独特魅力Windows11是微软在2021年10月5日发布的基于WindowsNT的操作系统,它为用户带来了一系列令人瞩目的功能特性。
- 大语言模型常见任务及评测数据集汇总(一):70 余个数据集!
大F的智能小课
大模型实战人工智能
1.文本分类1.1.中文文本分类数据集:THUCNews:清华大学推出的中文新闻文本数据集,包含了74万篇新闻文章,覆盖了10个类别。LCQMC:哈尔滨工业大学发布的数据集,主要用于中文句子匹配任务,也常用于文本分类。BQCorpus:同样用于中文句子匹配,也可用于文本分类。1.2.英文文本分类数据集:IMDb:包含50,000条影评数据,分为正面和负面两类,常用于情感分析。20Newsgroup
- 毕设项目 基于大数据的b站数据分析
nange12330a
毕业设计毕设大数据
文章目录0数据分析目标1B站整体视频数据分析1.1数据预处理1.2数据可视化1.3分析结果2单一视频分析2.1数据预处理2.2数据清洗2.3数据可视化3文本挖掘(NLP)3.1情感分析0数据分析目标今天向大家介绍如何使用大数据技术,对B站的视频数据进行分析,得到可视化结果。项目运行效果:毕业设计基于大数据的b站数据分析项目分享:见文末!1B站整体视频数据分析分析方向:首先从总体情况进行分析,之后分
- 人工智能能否超过人类智能
CaiGbro
哲学思考人工智能
论人工智能能否超过人类智能首先是智能的量纲问题:是逻辑、推理、抽象、想象、语言、情感、自我意识还是其它。这里没限定量纲的范围,姑且认为是所有范围,即人能具有的能力,人工智能都要具有并且超过人类,全面超过才算真的超过。其次有两个重点:一是人能不能制造出超过人类本身智能的物体。二是在第一个前提下,人会不会制造这样一个物体。最后一个关键性要素,这个智能物体能不能完全服从人,为人所用。所以这里的超过有两个
- 多模态人工智能的现状,类型与未来发展的全面综合性分析论述报告(包括deepseek,Gemini等,共计20000字+)
清风拂袖啦
人工智能大数据机器学习语音识别计算机视觉
截止2025年2月12日2点22。以类型+优缺点分类论述1.文生视频模型(如Sora、Pika、RunwayGen-2)功能与数据:OpenAISora:Sora模型于2024年2月发布,初期内部测试,2024年11月向部分创作者开放有限访问权限。Sora能够生成长达60秒的视频,包含精细的背景、复杂的多角度镜头切换和富有情感的角色。分辨率方面,Sora支持多种尺寸,包括1920x1080p、10
- 基于自然语言处理的客服情感分析系统分析报告
大霸王龙
系统分析业务人工智能知识图谱python
1.大纲分析基于自然语言处理的客服情感分析系统分析报告引言随着互联网的发展,企业的客服体系面临着巨大的挑战和机遇。传统的客服模式依赖人工接听电话和处理邮件,这种方式效率低下且难以满足日益增长的服务需求。为了提高服务质量和服务效率,越来越多的企业开始引入智能化的客服系统。其中,基于自然语言处理(NLP)的客服情感分析系统逐渐成为热门的研究方向。这种系统能够自动识别客户的语气和情绪,从而帮助企业更好地
- 以假乱真,天工音乐大模型带来颠覆式 AI 体验
昨日,昆仑万维AI音乐生成大模型「天工SkyMusic」开启了免费邀测活动,诚邀媒体、行业专家以及感兴趣的音乐从业者们共同体验人声情感表达SOTA的音乐大模型产品。邀测开始后,广大用户对「天工SkyMusic」AI音乐生成大模型的热情远超我们的预期,工作人员在极短时间内收到了几十万份测试申请,其中包括众多专业的音乐创作人、媒体及行业专家,还有大量测试申请被源源不断地发至后台。同时,我们也收到了大量
- 品牌竞争理解
星尘幻宇科技
产品运营
1、品牌:清晰目标、切实的原创文化、兼顾功能与情感、对外联系、以人为本、伙伴协助关系、以客户为中心、面向未来、严谨、专业、战略引导、值得信赖、强大且具有驱动力的价值。2、持久的品牌,持久的战略性品牌--品牌引领企业,而不是企业引领品牌。3、品牌注重差异性4、关注基层面:即战略型品牌身份与特征:谁、为什么战略品牌表现:怎么运作;战略品牌影响:如何获得信任、品牌表现如何5、营销渠道:知晓、思考、决策;
- 电影《哪吒之魔童闹海》迅雷BT下载[AVI/1.28GB/2.35GB]高清百度云共享[HD1280p已更新]
视频php
《哪吒之魔童闹海》:一场视觉与心灵的双重盛宴《哪吒之魔童闹海》是由饺子编剧并执导,吕艳婷、囧森瑟夫、瀚墨、陈浩、绿绮担任主要配音的奇幻动画电影。影片于2025年1月29日在中国大陆上映,作为《哪吒》系列电影的第二部,该片延续了前作的经典元素,并在剧情、角色塑造、主题阐释等方面进行了全方位的升级和突破。影片不仅以其震撼的视觉效果和深刻的情感内核赢得了观众的喜爱,更以其独特的文化魅力和哲学深度引发了广
- Python实现简单的情感分析应用
CrMylive.
python开发语言
一、前言情感分析是人工智能和自然语言处理中十分重要的一部分。情感分析能够对文本进行分析,判断文本所表达的情感。随着社交媒体的普及,情感分析变得越来越重要,可以用来分析人们对于某个话题或事件的态度和情感。本文将介绍情感分析的基本概念、应用和实现过程。二、什么是情感分析?情感分析(SentimentAnalysis),也称为意见挖掘(OpinionMining),是一种通过自然语言处理、文本挖掘和计算
- Python 高级实战:基于自然语言处理的情感分析系统
摸五休二
python自然语言处理开发语言nlp
数据集下载链接:https://download.csdn.net/download/qq_42120268/90041835前言在大数据和人工智能迅猛发展的今天,自然语言处理(NLP)作为人工智能的重要分支,已经深入到我们的日常生活和工作中。情感分析作为NLP中的一个重要应用,广泛应用于市场分析、舆情监控和客户反馈等领域。本文将讲述一个基于Python实现的情感分析系统,旨在帮助大家进一步提升在
- 大语言模型应用指南:Gemini简介
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大型语言模型的兴起近年来,随着计算能力的提升和数据量的爆炸式增长,大型语言模型(LLM)逐渐成为人工智能领域的研究热点。LLM基于深度学习技术,通过训练海量的文本数据,能够理解和生成自然语言,并在各种任务中展现出惊人的能力,例如:文本生成:写作故事、诗歌、新闻报道等机器翻译:将一种语言翻译成另一种语言问答系统:回答用户提出的问题代码生成:自动生成代码情感分析:分析文本的情感倾向1
- AI学习指南HuggingFace篇-项目实战:情感分析系统
俞兆鹏
AI学习指南ai
一、引言情感分析是自然语言处理(NLP)中的一个重要应用,广泛用于舆情分析、用户反馈分析等领域。HuggingFace的Transformers库提供了强大的工具,使得情感分析变得简单高效。本文将通过一个完整的项目案例,从数据收集、模型训练到部署,展示HuggingFace在情感分析中的实战应用。二、项目实战:情感分析系统(一)数据收集情感分析通常需要一个包含文本和对应情感标签的数据集。Huggi
- 如何将加密货币情感情绪得分转化为量化交易信号
朴拙Python交易猿
python
如何将加密货币情感情绪得分转化为量化交易信号数据来源于lunarcrushhttps://lunarcrush.com/developers/api/public/coins/:coin/time-series/v2?coin=2&start=&end={时间:1738281600,//2025年1月31日星期五00:00:00GMTUnix时间戳(以秒为单位)打开:3,247.87,//该时间段
- 电影《哪吒之魔童闹海》迅雷BT下载[AVI/1.28GB/2.35GB]高清百度云共享[HD1280p已更新]
视频php
《哪吒之魔童闹海》:一场视觉与心灵的双重盛宴《哪吒之魔童闹海》是由饺子编剧并执导,吕艳婷、囧森瑟夫、瀚墨、陈浩、绿绮担任主要配音的奇幻动画电影。影片于2025年1月29日在中国大陆上映,作为《哪吒》系列电影的第二部,该片延续了前作的经典元素,并在剧情、角色塑造、主题阐释等方面进行了全方位的升级和突破。影片不仅以其震撼的视觉效果和深刻的情感内核赢得了观众的喜爱,更以其独特的文化魅力和哲学深度引发了广
- LDA主题分析—情感分析案例
rubyw
机器学习数据分析python机器学习
当然可以!以下是一个针对投诉内容进行情感分析的完整案例,包含数据准备、模型训练、情感分析以及结果展示的过程。案例:投诉内容情感分析步骤1:数据准备首先,我们准备一份包含用户投诉内容的数据集。假设数据集是一个CSV文件,包含两列:id和complaint。importpandasaspd#读取数据data=pd.read_csv('complaints.csv')#查看数据data.head()步骤
- Python用langchain、OpenAI大语言模型LLM情感分析AAPL股票新闻数据及提示工程优化应用
数据挖掘深度学习机器学习
全文链接:https://tecdat.cn/?p=39614本文主要探讨了如何利用大语言模型(LLMs)进行股票分析。通过使用提供的股票市场和金融新闻获取数据,结合Python中的相关库,如Pandas、langchain等,实现对股票新闻的情感分析。利用大语言模型构建情感分析模型,通过提示工程等技术优化模型,最终通过可视化展示股票市场的情感倾向,为股票投资决策提供参考。关键词大语言模型;股票分
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不