1.五层协议的体系结构
学习计算机网络时我们一般采用折中的办法,也就是中和 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚。五层结构各层的功能简介
1.面向用户的应用层:
应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。对于不同的网络应用需要不同的应用层协议。在互联网中应用层协议很多,如域名系统DNS,支持万维网应用的 HTTP协议,支持电子邮件的 SMTP协议等等。我们把应用层交互的数据单元称为报文。
DNS:
域名系统(Domain Name System缩写 DNS,Domain Name被译为域名)是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。(百度百科)例如:一个公司的 Web 网站可看作是它在网上的门户,而域名就相当于其门牌地址,通常域名都使用该公司的名称或简称。
HTTP协议
超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议。所有的 WWW(万维网) 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。
2.运输层
运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。由于一台主机可同时运行多个线程,因此运输层有复用和分用的功能。所谓复用就是指多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。
运输层主要使用以下两种协议
传输控制协议 TCP(Transmisson Control Protocol)–提供面向连接的,可靠的数据传输服务。
用户数据协议 UDP(User Datagram Protocol)–提供无连接的,尽最大努力的数据传输服务(不保证数据传输的可靠性)。
UDP 的主要特点
UDP 是面向非连接的;
UDP 使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态;
UDP 是面向报文的;
UDP 没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如 直播,实时视频会议等);
UDP 支持一对一、一对多、多对一和多对多的交互通信;
UDP 的首部开销小,只有8个字节,比TCP的20个字节的首部要短。
TCP 的主要特点
TCP 是面向连接的。(就好像打电话一样,通话前需要先拨号建立连接,通话结束后要挂机释放连接);
每一条 TCP 连接只能有两个端点,每一条TCP连接只能是点对点的(一对一);
TCP 提供可靠交付的服务。通过TCP连接传送的数据,无差错、不丢失、不重复、并且按序到达;
TCP 提供全双工通信。TCP 允许通信双方的应用进程在任何时候都能发送数据。TCP 连接的两端都设有发送缓存和接收缓存,用来临时存放双方通信的数据;
面向字节流。TCP 中的“流”(Stream)指的是流入进程或从进程流出的字节序列。“面向字节流”的含义是:虽然应用程序和 TCP 的交互是一次一个数据块(大小不等),但 TCP 把应用程序交下来的数据仅仅看成是一连串的无结构的字节流。
3.网络层
网络层(network layer)负责为分组交换网上的不同主机提供通信服务。 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报 ,简称 数据报。
这里要注意:不要把运输层的“用户数据报 UDP ”和网络层的“ IP 数据报”弄混。另外,无论是哪一层的数据单元,都可笼统地用“分组”来表示。
网络层的另一个任务就是选择合适的路由,使源主机运输层所传下来的分组,能通过网络层中的路由器找到目的主机。
这里强调指出,网络层中的“网络”二字已经不是我们通常谈到的具体网络,而是指计算机网络体系结构模型中第三层的名称.
互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Intert Prococol)和许多路由选择协议,因此互联网的网络层也叫做网际层或IP层。
4.数据链路层
数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。 在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。
在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。 控制信息还使接收端能够检测到所收到的帧中有误差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。
5.物理层
在物理层上所传送的数据单位是比特。 物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异。 使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。
在互联网使用的各种协中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的TCP/IP并不一定单指TCP和IP这两个具体的协议,而往往表示互联网所使用的整个TCP/IP协议族。
DNS的解析流程
1、在浏览器中输入www . qq .com 域名,操作系统会先检查自己本地的hosts文件是否有这个网址映射关系,如果有,就先调用这个IP地址映射,完成域名解析。
2、如果hosts里没有这个域名的映射,则查找本地DNS解析器缓存,是否有这个网址映射关系,如果有,直接返回,完成域名解析。
3、如果hosts与本地DNS解析器缓存都没有相应的网址映射关系,首先会找TCP/ip参数中设置的首选DNS服务器,在此我们叫它本地DNS服务器,此服务器收到查询时,如果要查询的域名,包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析,此解析具有权威性。
4、如果要查询的域名,不由本地DNS服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个IP地址映射,完成域名解析,此解析不具有权威性。
5、如果本地DNS服务器本地区域文件与缓存解析都失效,则根据本地DNS服务器的设置(是否设置转发器)进行查询,如果未用转发模式,本地DNS就把请求发至13台根DNS,根DNS服务器收到请求后会判断这个域名(.com)是谁来授权管理,并会返回一个负责该顶级域名服务器的一个IP。本地DNS服务器收到IP信息后,将会联系负责.com域的这台服务器。这台负责.com域的服务器收到请求后,如果自己无法解析,它就会找一个管理.com域的下一级DNS服务器地址(http://qq.com)给本地DNS服务器。当本地DNS服务器收到这个地址后,就会找http://qq.com域服务器,重复上面的动作,进行查询,直至找到www . qq .com主机。
6、如果用的是转发模式,此DNS服务器就会把请求转发至上一级DNS服务器,由上一级服务器进行解析,上一级服务器如果不能解析,或找根DNS或把转请求转至上上级,以此循环。不管是本地DNS服务器用是是转发,还是根提示,最后都是把结果返回给本地DNS服务器,由此DNS服务器再返回给客户机。
序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。
确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。
确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效
同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。
终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接
PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。
三次握手(Three-way Handshake)其实就是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备。实质上其实就是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。
刚开始客户端处于 Closed 的状态,服务端处于 Listen 状态。
进行三次握手:
第一次握手:客户端给服务端发一个 SYN 报文,并指明客户端的初始化序列号 ISN。此时客户端处于 SYN_SENT 状态。
首部的同步位SYN=1,初始序号seq=x,SYN=1的报文段不能携带数据,但要消耗掉一个序号。
第二次握手:服务器收到客户端的 SYN 报文之后,会以自己的 SYN 报文作为应答,并且也是指定了自己的初始化序列号ISN(seq)。同时会把客户端的 ISN + 1 作为ACK 的值,表示自己已经收到了客户端的 SYN,此时服务器处于 SYN_RCVD
的状态。
在确认报文段中SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y。
第三次握手:客户端收到 SYN 报文之后,会发送一个 ACK 报文,当然,也是一样把服务器的 ISN + 1 作为 ACK
的值,表示已经收到了服务端的 SYN 报文,此时客户端处于 ESTABLISHED 状态。服务器收到 ACK 报文之后,也处于ESTABLISHED 状态,此时,双方已建立起了连接。
确认报文段ACK=1,确认号ack=y+1,序号seq=x+1(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。
四次挥手
建立一个连接需要三次握手,而终止一个连接要经过四次挥手(也有将四次挥手叫做四次握手的)。这由TCP的半关闭(half-close)造成的。所谓的半关闭,其实就是TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力。
TCP 连接的拆除需要发送四个包,因此称为四次挥手(Four-way handshake),客户端或服务端均可主动发起挥手动作。
刚开始双方都处于ESTABLISHED 状态,假如是客户端先发起关闭请求。四次挥手的过程如下:
第一次挥手:客户端发送一个 FIN 报文,报文中会指定一个序列号。此时客户端处于 FIN_WAIT1 状态。
即发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN_WAIT1(终止等待1)状态,等待服务端的确认。
第二次挥手:服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序列号值 +1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT 状态。即服务端收到连接释放报文段后即发出确认报文段(ACK=1,确认号ack=u+1,序号seq=v),服务端进入CLOSE_WAIT(关闭等待)状态,此时的TCP处于半关闭状态,客户端到服务端的连接释放。客户端收到服务端的确认后,进入FIN_WAIT2(终止等待2)状态,等待服务端发出的连接释放报文段。
第三次挥手:如果服务端也想断开连接了,和客户端的第一次挥手一样,发给 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态。即服务端没有要向客户端发出的数据,服务端发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),服务端进入LAST_ACK(最后确认)状态,等待客户端的确认。
第四次挥手:客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答,且把服务端的序列号值 +1 作为自己 ACK 报文的序列号值,此时客户端处于 TIME_WAIT 状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态,服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态。
即客户端收到服务端的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),客户端进入TIME_WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,客户端才进入CLOSED状态。收到一个FIN只意味着在这一方向上没有数据流动。客户端执行主动关闭并进入TIME_WAIT是正常的,服务端通常执行被动关闭,不会进入TIME_WAIT状态。
在socket编程中,任何一方执行close()操作即可产生挥手操作。
拥塞控制
慢开始:
发送方维持一个拥塞窗口 cwnd ( congestion window )的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。发送方让自己的发送窗口等于拥塞窗口。
发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就再增大一些,以便把更多的分组发送出去。但只要网络出现拥塞,拥塞窗口就减小一些,以减少注入到网络中的分组数。
慢开始算法的思路就是,不要一开始就发送大量的数据,先探测一下网络的拥塞程度,也就是说由小到大逐渐增加拥塞窗口的大小。
拥塞避免:
让拥塞窗口cwnd缓慢地增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是加倍。这样拥塞窗口cwnd按线性规律缓慢增长,比慢开始算法的拥塞窗口增长速率缓慢得多。
快重传:
当接收端收到比期望序号大的报文段时,便会重复发送最近一次确认的报文段的确认信号,我们称之为冗余ACK(duplicate ACK)。
如图所示,报文段1成功接收并被确认ACK 2,接收端的期待序号为2,当报文段2丢失,报文段3失序到来,与接收端的期望不匹配,接收端重复发送冗余ACK 2。
这样,如果在超时重传定时器溢出之前,接收到连续的三个重复冗余ACK(其实是收到4个同样的ACK,第一个是正常的,后三个才是冗余的),发送端便知晓哪个报文段在传输过程中丢失了,于是重发该报文段,不需要等待超时重传定时器溢出,大大提高了效率。这便是快速重传机制。
快恢复:
当发送方连续收到三个重复确认,就执行“乘法减小”算法,把慢开始门限ssthresh减半。这是为了预防网络发生拥塞。请注意:接下去不执行慢开始算法。
由于发送方现在认为网络很可能没有发生拥塞,因此与慢开始不同之处是现在不执行慢开始算法(即拥塞窗口cwnd现在不设置为1),而是把cwnd值设置为 慢开始门限ssthresh减半后的数值,然后开始执行拥塞避免算法(“加法增大”),使拥塞窗口缓慢地线性增大。
常见面试题
1.为什么连接的时候是三次握手,关闭的时候却是四次挥手?
答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。
2.为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?
答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。
3.为什么不能用两次握手进行连接?
答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。
现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。
4.如果已经建立了连接,但是客户端突然出现故障了怎么办?
TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。
5.HTTP的请求过程
1.首先是域名解析DNS
2.TCP三次握手
3.发送请求信息
4.接收返回信息
6.TCP与UDP区别
1、 TCP面向连接 (如打电话要先拨号建立连接); UDP是无连接 的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付,Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。
3、UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。
4.每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP对系统资源要求较多,UDP对系统资源要求较少。
7.为什么UDP有时比TCP更有优势
UDP以其简单、传输快的优势,在越来越多场景下取代了TCP,如实时游戏。
(1)网速的提升给UDP的稳定性提供可靠网络保障,丢包率很低,如果使用应用层重传,能够确保传输的可靠性。
(2)TCP为了实现网络通信的可靠性,使用了复杂的拥塞控制算法,建立了繁琐的握手过程,由于TCP内置的系统协议栈中,极难对其进行改进。
采用TCP,一旦发生丢包,TCP会将后续的包缓存起来,等前面的包重传并接收到后再继续发送,延时会越来越大,基于UDP对实时性要求较为严格的情况下,采用自定义重传机制,能够把丢包产生的延迟降到最低,尽量减少网络问题对游戏性造成影响。
8.http和https的区别
http是明文传输的,超文本传输协议。https比http多了ssl加密,使用非对称加密与对称加密相结合。
对于http来说会存在数据安全问题,会被攻击者监听窃取信息或者篡改信息。
为什么要使用非对称加密与对称加密相结合呢?
首先对称加密效率比非对称加密的效率高,而对称加密又存在一个问题:如何让通信对方知道加密的公钥。
举例场景为:客户端A与服务端B进行通信。
1.如果直接使用对称加密的话,A在第一次通信时把自己的公钥以明文的方式传给B,B收到公钥后双方使用公钥加密进行数据通信。
但此时存在安全问题,如果第一次通信就被攻击者获取了通信信息,那么公钥就被监听到了,之后的加密传输也就失去作用了。
2.使用私钥+公钥进行通信,首先A发送公钥1给B,B收到公钥1后使用公钥1加密一个公钥2,把加密后的公钥2发送给A,A使用私钥对其解密,解密出公钥2,使用公钥2进行对称加密。
看似安全的公钥传送其实也有一些安全问题,如果第一次攻击者拦截了公钥1,然后使用公钥3给B,B使用公钥3加密公钥2,发给A的时候攻击者再次拦截,并解密出公钥2,再使用公钥1加密公钥2发送给A。这样攻击者就又获得了公钥2。
3.使用ca机构颁发证书实现公钥的传送,服务器把自己的公钥发送给ca机构,ca使用私钥对其进行加密,返回给服务器,服务器使用ca证书发给客户端,客户端使用ca的公钥解密获取ca证书的公钥信息,就确保了公钥的准确性。
9.Ip和mac地址的区别
IP地址是根据网络拓扑结构而分配的,mac是网络设备出厂就配置的,用于标识唯一的设备,更换网络场景,ip可以重新分配,mac不可更改。
有了mac为什么还需要ip
有唯一mac固然可以寻址,但是却不方便。mac地址是出厂自带的,至于后续设备到了哪里都是不可控的,所以mac没有规律可循。就好像快递员只用身份证号找人,由于人口是流动的,不一定就待在身份证号上的户籍地址,所以寻找难度过大。ip的优势正在于此。因为ip地址是可变的,且分为网络地址和主机地址,每一个接入网络的设备由DHCP服务器自动分配ip地址,同一个子网中的ip前几位是一样的,空间上靠近的设备ip前几位一样大大方便了寻址过程,再也不用满世界去找了,可以先找到子网,再在子网内找设备。
主机H1的IP数据报(网络层)向下交给数据链路层就被封装成MAC帧从HA1到HA3,然后路由器R1收到MAC帧后,向网络层传输并且解封去掉MAC帧的首部,就能看到IP然后路由器进行路由选择,继续前面的传到数据链路层封装成MAC帧,如此循环直到到达目的主机所在的路由器然后发送给目的主机。(这里是用ARP协议将IP地址转换成MAC地址的)
Mac地址不可修改,唯一标识一台网络设备,基于MAC地址的这种特点,局域网采用了用MAC地址来标识具体用户的方法。
Ip只记住终点地址,mac记录下一跳地址。
10.输入一个网址,会发生什么
1.首先会进行DNS解析,把网址对应的ip地址找到;
2.通过三次握手建立TCP连接;
3.浏览器向WEB服务器发起Http请求;
4.服务器端处理请求,并返回处理结果;
5.TCP四次挥手断开连接;
6.浏览器解析返回结果。
11.DNS解析过程
1.浏览器缓存,浏览器会缓存DNS记录一段时间。 有趣的是,操作系统没有告诉浏览器储存DNS记录的时间,这样不同浏览器会储存个自固定的一个时间(2分钟到30分钟不等)。
2.系统缓存,如果在浏览器缓存里没有找到需要的记录,浏览器会做一个系统调用(windows里是gethostbyname)。这样便可获得系统缓存中的记录。
这里也可以是hosts缓存
3.路由器缓存,接着,前面的查询请求发向路由器,它一般会有自己的DNS缓存。
4.本地DNS缓存,接下来要检查的就是本地DNS服务器。在这一般都能找到相应的缓存记录。
前面所有步骤没有缓存的情况下,本地 DNS 服务器会将请求转发到互联网上的根域,你的本地DNS从根域名服务器开始进行搜索,
5.根域名服务器
全球仅有13台根域名服务器,1个主根域名服务器,其余12为辅根域名服务器。根域名收到请求后会查看区域文件记录,若无则将其管辖范围内顶级域名(如.com)服务器IP告诉本地DNS服务器;
6.顶级域名服务器
顶级域名服务器收到请求后查看区域文件记录,若无则将其管辖范围内主域名服务器的IP地址告诉本地DNS服务器;
7.主域名服务器
主域名服务器接受到请求后查询自己的缓存,如果没有则进入下一级域名服务器进行查找,并重复该步骤直至找到正确纪录;把IP地址告诉本地DNS服务器。
8.保存结果至缓存
本地域名服务器把返回的结果保存到缓存,以备下一次使用,同时将该结果反馈给客户端,客户端通过这个IP地址与web服务器建立链接。
12.TCP滑动窗口机制
TCP滑动窗口技术通过动态改变窗口大小来调节两台主机间数据传输。每个TCP/IP主机支持全双工数据传输,因此TCP有两个滑动窗口:一个用于接收数据,另一个用于发送数据。TCP使用肯定确认技术,其确认号指的是下一个所期待数据包的序列号。 假定发送方设备以每一次三个数据包的方式发送数据,也就是说,窗口大小为3。发送方发送序列号为1、2、3的三个数据包,接收方设备成功接收数据包,用序列号4确认。发送方设备收到确认,继续以窗口大小3发送数据。当接收方设备要求降低或者增大网络流量时,可以对窗口大小进行减小或者增加,本例降低窗口大小为2,每一次发送两个数据包。当接收方设备要求窗口大小为0,表明接收方已经接收了全部数据,或者接收方应用程序没有时间读取数据,要求暂停发送。发送方接收到携带窗口号为0的确认,停止这一方向的数据传输。