sql优化

1、    用程序中,保证在实现功能的基础上,尽量减少对数据库的访问次数;通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配符如SELECT * FROM T1语句,要用到几列就选择几列如:SELECT COL1,COL2 FROM T1;在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300 COL1,COL2,COL3 FROM T1,因为某些情况下用户是不需要那么多的数据的。不要在应用中使用数据库游标,游标是非常有用的工具,但比使用常规的、面向集的SQL语句需要更大的开销;按照特定顺序提取数据的查找。

2、   避免使用不兼容的数据类型。例如float和int、char和varchar、binary和varbinary是不兼容的。数据类型的不兼容可能使优化器无法执行一些本来可以进行的优化操作。例如:
SELECT name FROM employee WHERE salary > 60000
在这条语句中,如salary字段是money型的,则优化器很难对其进行优化,因为60000是个整型数。我们应当在编程时将整型转化成为钱币型,而不要等到运行时转化。

3、   尽量避免在WHERE子句中对字段进行函数或表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT * FROM T1 WHERE F1/2=100
应改为:
SELECT * FROM T1 WHERE F1=100*2

SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’

SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

4、   避免使用!=或<>、IS NULL或IS NOT NULL、IN ,NOT IN等这样的操作符,因为这会使系统无法使用索引,而只能直接搜索表中的数据。例如:
SELECT id FROM employee WHERE id != 'B%'
优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

5、      尽量使用数字型字段,一部分开发人员和数据库管理人员喜欢把包含数值信息的字段
设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

6、      合理使用EXISTS,NOT EXISTS子句。如下所示:
1.SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
2.SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。
如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服务器资源。可以用EXISTS代替。如:
IF (SELECT COUNT(*) FROM table_name WHERE column_name = 'xxx')
可以写成:
IF EXISTS (SELECT * FROM table_name WHERE column_name = 'xxx')

经常需要写一个T_SQL语句比较一个父结果集和子结果集,从而找到是否存在在父结果集中有而在子结果集中没有的记录,如:
1.SELECT a.hdr_key FROM hdr_tbl a---- tbl a 表示tbl用别名a代替
WHERE NOT EXISTS (SELECT * FROM dtl_tbl b WHERE a.hdr_key = b.hdr_key)

2.SELECT a.hdr_key FROM hdr_tbl a
LEFT JOIN dtl_tbl b ON a.hdr_key = b.hdr_key WHERE b.hdr_key IS NULL

3.SELECT hdr_key FROM hdr_tbl
WHERE hdr_key NOT IN (SELECT hdr_key FROM dtl_tbl)
      三种写法都可以得到同样正确的结果,但是效率依次降低。

7、      尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE ‘%L%’
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT * FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。

8、      分利用连接条件,在某种情况下,两个表之间可能不只一个的连接条件,这时在 WHERE 子句中将连接条件完整的写上,有可能大大提高查询速度。
例:
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO AND A.ACCOUNT_NO=B.ACCOUNT_NO
第二句将比第一句执行快得多。

9、       消除对大型表行数据的顺序存取
      尽管在所有的检查列上都有索引,但某些形式的WHERE子句强迫优化器使用顺序存取。如:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR
order_num=1008
解决办法可以使用并集来避免顺序存取:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。

10、    避免困难的正规表达式
      LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如
果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询
时就会利用索引来查询,显然会大大提高速度。
11、    使用视图加速查询
把表的一个子集进行排序并创建视图,有时能加速查询。它有助于避免多重排序
操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个
视图中,并按客户的名字进行排序:
CREATE VIEW DBO.V_CUST_RCVLBES
AS
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
ORDER BY cust.name

然后以下面的方式在视图中查询:
SELECT * FROM V_CUST_RCVLBES
WHERE postcode>“98000”
视图中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘
I/O,所以查询工作量可以得到大幅减少。

12、    能够用BETWEEN的就不要用IN
SELECT * FROM T1 WHERE ID IN (10,11,12,13,14)
改成:
SELECT * FROM T1 WHERE ID BETWEEN 10 AND 14
因为IN会使系统无法使用索引,而只能直接搜索表中的数据。

13、    DISTINCT的就不用GROUP BY
      SELECT OrderID FROM Details WHERE UnitPrice > 10 GROUP BY OrderID
      可改为:
      SELECT DISTINCT OrderID FROM Details WHERE UnitPrice > 10
     

14、      部分利用索引
      1.SELECT employeeID, firstname, lastname
FROM names
WHERE dept = 'prod' or city = 'Orlando' or division = 'food'

      2.SELECT employeeID, firstname, lastname FROM names WHERE dept = 'prod'
UNION ALL
SELECT employeeID, firstname, lastname FROM names WHERE city = 'Orlando'
UNION ALL
SELECT employeeID, firstname, lastname FROM names WHERE division = 'food'
如果dept 列建有索引则查询2可以部分利用索引,查询1则不能。


15、      能用UNION ALL就不要用UNION
UNION ALL不执行SELECT DISTINCT函数,这样就会减少很多不必要的资源

16、      不要写一些不做任何事的查询
如:SELECT COL1 FROM T1 WHERE 1=0
    SELECT COL1 FROM T1 WHERE COL1=1 AND COL1=2
这类死码不会返回任何结果集,但是会消耗系统资源。

17、     尽量不要用SELECT INTO语句。
SELECT INOT 语句会导致表锁定,阻止其他用户访问该表。

18、 必要时强制查询优化器使用某个索引
     SELECT * FROM T1 WHERE nextprocess = 1 AND processid IN (8,32,45)
改成:
SELECT * FROM T1 (INDEX = IX_ProcessID) WHERE nextprocess = 1 AND processid IN (8,32,45)
则查询优化器将会强行利用索引IX_ProcessID 执行查询。
    
19、     虽然UPDATE、DELETE语句的写法基本固定,但是还是对UPDATE语句给点建议:
a)    尽量不要修改主键字段。
b)    当修改VARCHAR型字段时,尽量使用相同长度内容的值代替。
c)    尽量最小化对于含有UPDATE触发器的表的UPDATE操作。
d)    避免UPDATE将要复制到其他数据库的列。
e)    避免UPDATE建有很多索引的列。
f)    避免UPDATE在WHERE子句条件中的列。

MS   SQL   Server查询优化方法
查询速度慢的原因很多,常见如下几种

        1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
        2、I/O吞吐量小,形成了瓶颈效应。
        3、没有创建计算列导致查询不优化。
        4、内存不足
        5、网络速度慢
        6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
        7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
        8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
        9、返回了不必要的行和列
        10、查询语句不好,没有优化

        可以通过如下方法来优化查询

        1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.
        2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
        3、升级硬件
        4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段
        5、提高网速;
        6、扩大服务器的内存,Windows   2000和SQL   server   2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行   Microsoft   SQL   Server?   2000   时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的   1.5   倍。如果另外安装了全文检索功能,并打算运行   Microsoft   搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的   3   倍。将   SQL   Server   max   server   memory   服务器配置选项配置为物理内存的   1.5   倍(虚拟内存大小设置的一半)。
        7、增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP   BY字句同时执行,SQL   SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作UPDATE,INSERT, DELETE还不能并行处理。
        8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。   like   'a%'   使用索引   like   '%a'   不使用索引用   like   '%a%'   查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
        9、DB   Server   和APPLication   Server   分离;OLTP和OLAP分离
        10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层   Web   站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')

          a、在实现分区视图之前,必须先水平分区表
          b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。

      11、重建索引   DBCC   REINDEX   ,DBCC   INDEXDEFRAG,收缩数据和日志   DBCC   SHRINKDB,DBCC   SHRINKFILE.   设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。   在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:

        1、   查询语句的词法、语法检查         
        2、   将语句提交给DBMS的查询优化器
        3、   优化器做代数优化和存取路径的优化
        4、   由预编译模块生成查询规划
        5、   然后在合适的时间提交给系统处理执行
        6、   最后将执行结果返回给用户其次,看一下SQL   SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。

        12、Commit和rollback的区别   Rollback:回滚所有的事物。   Commit:提交当前的事物.   没有必要在动态SQL里写事物,如果要写请写在外面如:   begin   tran   exec(@s)   commit   trans   或者将动态SQL   写成函数或者存储过程。

        13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。

        14、SQL的注释申明对执行没有任何影响

        15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类:   只进   必须按照从第一行到最后一行的顺序提取行。FETCH   NEXT   是唯一允许的提取操作,也是默认方式。可滚动性   可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。

        有四个并发选项

READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。

        OPTIMISTIC   WITH   valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。   选择这个并发选项 OPTIMISTIC   WITH   ROW   VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。
        在   SQL   Server   中,这个性能由   timestamp   数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有   timestamp   列的行时,SQL   Server   先在时间戳列中存储当前的   @@DBTS   值,然后增加   @@DBTS   的值。如果某   个表具有   timestamp   列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较   timestamp   列即可。如果应用程序对没有   timestamp   列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。
        SCROLL   LOCKS   这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。
        然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的   SELECT   语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则   COMMIT   语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标   SELECT   语句中的锁提示。
        锁提示   只读   乐观数值   乐观行版本控制   锁定无提示   未锁定   未锁定   未锁定   更新   NOLOCK   未锁定   未锁定   未锁定   未锁定   HOLDLOCK   共享   共享   共享   更新   UPDLOCK   错误   更新   更新   更新   TABLOCKX   错误   未锁定   未锁定   更新其它   未锁定   未锁定   未锁定   更新   *指定   NOLOCK   提示将使指定了该提示的表在游标内是只读的。

        16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在;用索引优化器优化索引

        17、注意UNion和UNion   all   的区别。UNION   all好

        18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的

        19、查询时不要返回不需要的行、列

        20、用sp_configure   'query   governor   cost   limit'或者SET   QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET   LOCKTIME设置锁的时间


1、操作符号:    NOT IN操作符
           此操作是强列推荐不使用的,因为它不能应用表的索引。
           推荐方案:用NOT EXISTS 或(外连接+判断为空)方案代替
           "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", "LIKE '%500'",因为他们不走索引全是表扫描。
           NOT IN会多次扫描表,使用EXISTS、NOT EXISTS、IN、LEFT OUTER   JOIN来替代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.
           如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS   NULL,“NOT",   "NOT   EXISTS",   "NOT   IN"能优化她,
           而” <> ”等还是不能优化,用不到索引。
       
        2、注意UNion和UNion   all的区别。UNION比union all多做了一步distinct操作。能用union all的情况下尽量不用union。
       
        3、查询时尽量不要返回不需要的行、列。另外在多表连接查询时,尽量改成连接查询,少用子查询。。
       
        4、尽量少用视图,它的效率低。对视图操作比直接对表操作慢,可以用存储过程来代替它。特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。
           我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,
           直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.为了加快视图的查询,MsSQL增加了视图索引的功能。

        5、创建合理的索引,对于插入或者修改比较频繁的表,尽量慎用索引。因为如果表中存在索引,插入和修改时也会引起全表扫描。
           索引一般使用于where后经常用作条件的字段上。

        6、在表中定义字段或者存储过程、函数中定义参数时,将参数的大小设置为合适即可,勿设置太大。这样开销很大。

        7、Between在某些时候比IN速度更快,Between能够更快地根据索引找到范围。用查询优化器可见到差别。
           select   *   from   chineseresume   where   title   in   ('男','女')
           Select   *   from   chineseresume   where   between   '男'   and   '女'是一样的。由于in会在比较多次,所以有时会慢些。

        8、在必要是对全局或者局部临时表创建索引,有时能够提高速度,但不是一定会这样,因为索引也耗费大量的资源。他的创建同是实际表一样。

        9、 WHERE后面的条件顺序影响
            WHERE子句后面的条件顺序对大数据量表的查询会产生直接的影响,如
            Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1
            Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下'
            以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个字段都没进行索引,所以执行的时候都是全表扫描,
            如果dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,
            在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,
            而在进行第二条SQL的时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。
            所以尽量将范围小的条件放在前面。。

        10、用OR的字句可以分解成多个查询,并且通过UNION   连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION   all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。

        11、没有必要时不要用DISTINCT和ORDER   BY,这些动作可以改在客户端执行。它们增加了额外的开销。这同UNION和UNION   ALL一样的道理。  
           
        12、使用in时,在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,这样可以减少判断的次数

        13、当用SELECT INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其他的连接的存取。创建临时表时用显示声明语句,
            在另一个连接中SELECT   *   from   sysobjects可以看到 SELECT   INTO   会锁住系统表,
            Create   table   也会锁系统表(不管是临时表还是系统表)。所以千万不要在事物内使用它!!!这样的话如果是经常要用的临时表请使用实表,或者临时表变量。

        14、一般在GROUP BY和HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:
            select   的Where字句选择所有合适的行,Group   By用来分组个统计行,Having字句用来剔除多余的分组。
            这样Group   By和Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group BY的目的不包括计算,只是分组,那么用Distinct更快

        15、一次更新多条记录比分多次更新每次一条快,就是说批处理好

        16、慎用临时表,临时表存储于tempdb库中,操作临时表时,会引起跨库操作。尽量用结果集和表变量来代替它。

        17、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过,
            并且被组织到一个执行规划里、且存储在数据库中的 SQL语句,是控制流语言的集合,速度当然快。

        18、不要在一段SQL或者存储过程中多次使用相同的函数或相同的查询语句,这样比较浪费资源,建议将结果放在变量里再调用。这样更快。

        19、按照一定的次序来访问你的表。如果你先锁住表A,再锁住表B,那么在所有的存储过程中都要按照这个顺序来锁定它们。如果你(不经意的)某个存储过程中先锁定表B,再锁定表A,这可能就会导致一个死锁。如果锁定顺序没有被预先详细的设计好,死锁很难被发现

你可能感兴趣的:(sql,工作)