IEEE 754 浮点数的四种舍入方式

四种舍入方向:
向最接近的可表示的值;当有两个最接近的可表示的值时首选“偶数”值;向负无穷大(向下);向正无穷大(向上)以及向0(截断)。
说明:默认模式是最近舍入(Round to Nearest),它与四舍五入只有一点不同,对.5的舍入上,采用取偶数的方式。举例比较如下: 例2:
最近舍入模式:Round(0.5) = 0; Round(1.5) = 2; Round(2.5) = 2; 四舍五入模式:Round(0.5) = 1; Round(1.5) = 2; Round(2.5) = 3;
主要理由:由于字长有限,浮点数能够精确表示的数是有限的,因而也是离散的。在两个可以精确表示的相邻浮点数之间,必定存在无穷多实数是IEEE浮点数所无法精确表示的。如何用浮点数表示这些数,IEEE 754的方法是用距离该实数最近的浮点数来近似表示。至于中间值为什么取偶数而不是奇数,大师Knuth有一个例子说明偶数更好,于是一锤定音。

最近舍入模式在C/C++中没有相应的函数,当然,IEEE754以及x86 FPU的默认舍入模式是最近舍入,也就是每次浮点计算结果都采用最近舍入模式,除非用程序显式设置为其它三种舍入模式。 另外三种舍入模式,简要说明。

向0(截断)舍入:C/C++的类型转换。(int) 1.324 = 1,(int) -1.324 = -1;

向负无穷大(向下)舍入:C/C++函数floor()。例如:floor(1.324) = 1,floor(-1.324) = -2。

向正无穷大(向上)舍入:C/C++函数ceil()。ceil(1.324) = 2。Ceil(-1.324) = -1;

后两种舍入方法据说是为了数值计算中的区间算法,但很少听说哪个商业软件使用区间算法。

 

你可能感兴趣的:(浮点数)