- 地球科学数据学习笔记---流向与风向、浪向
fried-ghost
地球科学数据学习笔记学习笔记数据分析
一、流向(current)流向一般指流体前进的方向、去向,一般以正北方向为正,例如流体从南流向北,则流向为0°,其示意图如下二、风向与浪向风向与浪向一般都指来向,与流向相反,例如风从南吹向北,则为南风,风向为180°。气象数据中一般会将风速数据存成u、v两个分量(雷达数据除外),u分量表示纬向风,v分量表示经向风。u为正,表示西风,风向为270°;v为正,表示南风,风向为180°。示意图如下所示,
- 大数据与物联网(IoT)的完美融合:驱动智能新时代
Echo_Wish
大数据高阶实战秘籍大数据物联网python人工智能
大数据与物联网(IoT)的完美融合:驱动智能新时代大家好,我是你们的大数据探索者Echo_Wish。今天,我们将深入探讨大数据与物联网(IoT)整合的重要性及其在现代科技中的应用。物联网通过连接大量智能设备,生成海量数据;而大数据技术则赋予我们从这些数据中提取有价值信息的能力。当两者结合在一起时,能够为各行各业带来革命性的变化,推动智能时代的到来。一、大数据与物联网的基本概念1.物联网(IoT)物
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- 使用Python构建去中心化社交网络:打破信息垄断的新思维
Echo_Wish
Python!实战!python去中心化网络
使用Python构建去中心化社交网络:打破信息垄断的新思维大家好,我是你们的技术伙伴Echo_Wish。今天,我们来探讨如何使用Python构建一个去中心化的社交网络。在这个以数据为王的时代,中心化平台掌控着大量用户数据,这不仅对隐私保护带来挑战,也容易形成信息垄断。而去中心化的社交网络,通过分布式技术,将数据的控制权交还用户,打破信息垄断,提升隐私安全性。本文将详细介绍如何使用Python实现这
- 集团公司数字化转型及数据资源中心建设方案:蓝图规划、总体流程、数据模型设计、数据区定位与数据模型设计流程、基础区数据模型设计、用户标签数据模型设计、数据开发体系框架、数据统一调度管理、ETL调度平台
数智化领地
数字化转型数据治理主数据数据仓库etl数据仓库
集团公司数字化转型及数据资源中心建设方案集团公司数字化转型及数据资源中心建设方案蓝图规划数字化转型战略目标数据资源中心定位与功能整体架构与技术选型实施路径与时间表总体流程业务流程梳理与优化数据流程规划与设计技术实施步骤与要点风险评估与应对措施数据模型设计概念数据模型构建逻辑数据模型转换物理数据模型实现模型验证与优化方法数据区定位与数据模型设计流程数据区划分原则及策略各类数据区功能定义数据模型设计流
- python数据集_保存和使用python绘制多个数据集
weixin_39640085
python数据集
Iraninonemoreproblem-Ihavemultiplefileswiththefollowingformat:FreqAB10001.20.00141001.20.00013101.20.0012allfilesareinthesamefolder;uptonowIamabletoreadallfiles,dothecalculationsIwant,andthensaveonela
- 深入理解Kettle:ETL工具的学习与实践
未知方程 无解
本文还有配套的精品资源,点击获取简介:Kettle(Spoon)是Pentaho公司开发的开源ETL工具,用于数据整合和数据仓库建设。本学习笔记着重于Kettle的核心——转换引擎,详细探讨其数据处理的各个步骤,包括数据的输入、转换、输出以及工作原理,提供了一系列的学习资源和实践操作指南,旨在帮助学习者深入理解并掌握Kettle的转换引擎,从而提升数据处理能力。1.Kettle(Spoon)简介与
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- 数据集/API 笔记:湿球黑球温度(WBGT)观测数据
UQI-LIUWJ
数据集笔记
data.gov.sgWBGT是一个综合指标,考虑了气温、湿度、风速和太阳辐射,与气温不同。报告的WBGT是过去15分钟内的平均值,每15分钟更新一次。API调用curl--requestGET\--urlhttps://api-open.data.gov.sg/v2/real-time/api/weather调用结果
- 数据集/API 笔记:新加坡最新的停车场可用车位信息 & 停车场信息
UQI-LIUWJ
笔记
数据每分钟更新一次使用date_time参数可获取特定时间点的最新停车场可用车位信息调用接口curl--requestGET\--urlhttps://api.data.gov.sg/v1/transport/carpark-availability调用结果API返回的查询时间"2025-03-04T09:10:36+08:00"代表的是API查询的时间,但每个停车场的update_datetim
- PCL 最小二乘拟合空间曲线
点云侠
点云进阶算法c++计算机视觉3d开发语言
目录一、曲线拟合1、算法原理2、参考文献二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。博客长期更新,最近一次更新时间为:2024年7月14日。①代码在PCL1.14.1中运行;②完善代码;③新增标准测试数据一、曲线拟合1、算法原理 电力线三维重建指将提取得到的单根电力线进行精确矢量化。在理想情况下,
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- Python数据可视化 Pyecharts 制作 Scatter3D 3D散点图
Mr数据杨
Python数据可视化数据可视化python数据分析echarts
三维散点图是展示具有三个维度数据的有效工具,通过对数据点在三维空间中的分布进行可视化,可以直观地观察数据间的关系与趋势。借助pyecharts库的Scatter3D类,用户能够快速生成3D散点图,并自定义图表的各项参数,使图表更加符合展示需求。结合强大的视觉映射和交互功能,三维散点图不仅提升了数据分析的精度,还增强了用户与数据之间的互动性。文章目录Scatter3D:3D散点图Demo总结Scat
- 存储性能调优:掌握I/O性能调优和缓存策略配置
Morris只会敲命令
缓存
引言在数字化转型加速的今天,数据已成为企业核心资产,而存储系统的性能直接影响业务响应速度、用户体验和IT基础设施的总体效率。无论是高并发交易系统、实时分析平台,还是AI训练场景,存储I/O瓶颈和缓存策略配置不当都可能引发性能雪崩。本文将从硬件层到软件层,系统性地解析存储性能调优的核心技术,并提供可落地的优化策略。1.1存储介质特性与选型HDDvs.SSDvs.NVMeHDD的机械寻道延迟(平均5-
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- DeepSeek本地部署教程(Windows操作系统笔记本电脑适用)
程序员辣条
AI产品经理产品经理大模型人工智能DeepSeekWindowsAI大模型
最近DeepSeek非常火,你想不想也本地部署,玩转AI呢?一、将DeepSeek部署到自己的电脑有以下好处:1.数据隐私与安全本地存储:所有数据保存在本地,避免第三方服务器存储带来的隐私风险。数据控制:完全掌控数据访问权限,防止未经授权的访问或泄露。2.性能优化低延迟:本地运行减少网络延迟,响应速度更快。资源利用:可根据硬件配置优化性能,充分利用本地计算资源。3.定制化灵活配置:可根据需求调整模
- java.util中的Scanner类
鼬猿
java开发语言intellij-idea
Scanner类可以用于从各种来源(如标准输入、文件、字符串等)读取不同类型的数据。它提供了各种方法来解析和提取输入的数据,并将其转换为相应的数据类型。在使用Scanner之前,需要先通过import语句导入java.util.Scanner类。创建了一个Scanner对象并传入System.in作为输入源,表示从标准输入中读取数据。例:Scanner变量名=newScanner(System.i
- 获取视频第一帧兼容ios
小政爱学习!
音视频ios
js封装:/***获取视频第一帧的方法,并将画面转换成base64格式*@param{String}url视频的URL,可以是base64格式*@return{Promise}一个Promise对象,返回值为视频第一帧的base64数据*/exportfunctiongetVideoBase64(url){returnnewPromise((resolve,reject)=>{//创建video元
- 最硬核DNS详解
运维开发那些事
linuxlinux
1、是什么DNS(域名系统)是互联网的一项服务,它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS协议基于UDP协议,使用端口号53。2、域名服务器类型域名服务器在DNS体系中扮演着不同的角色,根据其功能和位置可以分为几种类型。以下是主要的域名服务器类型:根域名服务器:根域名服务器是DNS层次结构的最高层,它们并不直接提供具体的域名解析结果,而是指引查询到正确的顶
- 百望股份全面接入DeepSeek,打造企业级AGI革新引擎
kejicaijinghui
agi人工智能microsoft
近日,百望股份宣布全面接入DeepSeek大模型,通过将DeepSeek集成至数智商业平台,为企业提供AI驱动的数据综合服务。这不仅标志着百望股份在AI技术应用领域的重大突破,更预示着企业财税数字化转型即将迎来奇点。 五大场景升级,打造智能化产品矩阵 作为港股财税数字化解决方案第一股,百望股份凭借在企业服务领域的深厚积累,已成功为超过2000家大型企业集团、2300万家成长型企业提供全方位的数
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 标量、向量、矩阵与张量:从维度理解数据结构的层次
舒旻
AI杂谈矩阵数据结构线性代数人工智能深度学习
在数学和计算机科学中,维度描述了数据结构的复杂性,而标量、向量、矩阵、张量则是不同维度的数据表示形式。它们的关系可以理解为从简单到复杂的扩展,以下是详细解析:1.标量(Scalar):0维数据定义:单个数值,没有方向,只有大小。维度:0维(无索引)。示例:温度(25℃)、年龄(30岁)、灰度图像的单个像素值(128)。特点:基础数据单元,所有复杂结构的起点。2.向量(Vector):1维数据定义:
- 分布式事务 CAP三进二和Base定理
柿子加油努力
DistributedTransactions分布式
关系型数据库遵循ACID原则事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:1、A(Atomicity)原子性原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账
- 智能录音工牌如何应用在员工培训效果评估上?
DuDuTalk
人工智能录音设备语音分析自然语言处理语音识别
在数字化转型加速的今天,企业对员工培训效果的重视程度日益增加。为了确保培训能够切实提升员工的工作能力和效率,许多公司开始探索新的技术和方法来优化这一过程。智能录音工牌作为新兴的技术解决方案之一,正逐渐成为评估员工培训效果的理想选择。本文将深入探讨智能录音工牌如何助力企业更精准地衡量培训成效,并推动员工技能持续进步。1、真实场景数据收集,构建全面评估体系智能录音工牌能够在员工与客户互动的过程中实时录
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 目标检测——玉米叶感染数据集
Bryan Ding
人工智能
一、重要性首先,玉米作为世界上重要的粮食作物之一,其生长状况直接影响到粮食产量和粮食安全。玉米叶感染是玉米生长过程中常见的病害之一,会导致玉米叶片出现肿胀、皱缩、扭曲变形等症状,严重时甚至可能形成瘤状物。因此,及早检测玉米叶感染对于保障玉米的健康生长和提高产量具有重要意义。其次,通过玉米叶感染检测,农民和农业科研人员可以及时发现并采取有效的防治措施,防止病害的扩散和加重。这不仅可以减少因病害导致的
- 如何用postman设置接口测试关联
海姐软件测试
postmanpostman测试工具
一、提取响应数据(Tests脚本)在第一个请求的Tests标签中编写脚本,提取需要关联的数据://示例1:提取JSON响应中的tokenletresponseData=pm.response.json();pm.environment.set("token",responseData.token);//保存到环境变量//示例2:提取cookiespm.environment.set("sessio
- 数据库事务,回滚到指定点 oracle java
xiaoyustudiowww
jvmjavaoracle
======oracle表sqlCREATETABLE"SMALL19RAIN"."R_TABLE_STU"("NAME"VARCHAR2(200BYTE),"AGE"NUMBER,"STU_ID"NUMBERNOTNULLENABLE,"DATARAIN"VARCHAR2(200BYTE))SEGMENTCREATIONIMMEDIATEPCTFREE10PCTUSED40INITRANS1MA
- VB6 调用 JS 函数时数据传输json格式或a=1&b=s2字符串
专注VB编程开发20年
javascriptjson开发语言vb6js
1.VB6调用JS函数时数据传输格式当从VB6调用JS设计的函数时,使用JSON字符串作为数据传输格式是一个不错的选择,但并非唯一选择。使用JSON字符串传输的优势通用性:JSON是一种轻量级的数据交换格式,具有良好的跨语言和跨平台特性。在VB6和JS之间使用JSON字符串传输数据,可以方便地表示复杂的数据结构,如对象、数组等。结构化:JSON可以清晰地表示数据的结构,便于在不同语言环境中解析和处
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,