Python---pyspark中的数据输出(collect,reduce,take,count,saveAsTextFile),了解PySpark代码在大数据集群上运行

1. Spark的编程流程就是:

将数据加载为RDD(数据输入)

对RDD进行计算(数据计算)

将RDD转换为Python对象(数据输出)

2. 数据输出的方法

将RDD的结果输出为Python对象的各类方法

       collect:将RDD内容转换为list

       reduce:对RDD内容进行自定义聚合

       take:取出RDD的前N个元素组成list返回

       count:统计RDD元素个数返回

collect算子:

将RDD各个分区内的数据,统一收集到Drive中,形成一个list对象

reduce算子:

对RDD数据集按照传入的逻辑进行聚合,返回值等同于计算函数的返回

from pyspark import SparkConf, SparkContext
import os
import json
os.environ['PYSPARK_PYTHON'] = 'D:/dev/python/python310/python.exe'
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)

# 准备RDD
rdd = sc.parallelize([1, 2, 3, 4, 5])

# collect算子,输出RDD为list对象
rdd_list: list = rdd.collect()
print(rdd_list)
print(type(rdd_list))
# reduce算子,对RDD进行两两聚合
num = rdd.reduce(lambda a, b: a + b)
print(num)
# take算子,取出RDD前N个元素,组成list返回
take_list = rdd.take(3)
print(take_list)
# count,统计rdd内有多少条数据,返回值为数字
num_count = rdd.count()
print(f"rdd内有{num_count}个元素")

sc.stop()

 将RDD的内容输出到文件中:

rdd.saveAsTextFile(路径),输出的结果是一个文件夹,有几个分区就输出多少个结果文件

修改RDD分区:

①SparkConf对象设置conf.set("spark.default.parallelism", "1")

②创建RDD的时候,sc.parallelize方法传入numSlices参数为1

from pyspark import SparkConf, SparkContext
import os
import json
os.environ['PYSPARK_PYTHON'] = 'D:/dev/python/python310/python.exe'
os.environ['HADOOP_HOME'] = "D:/dev/hadoop-3.0.0"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")

sc = SparkContext(conf=conf)

# 准备RDD1
rdd1 = sc.parallelize([1, 2, 3, 4, 5], numSlices=1)

# 准备RDD2
rdd2 = sc.parallelize([("Hello", 3), ("Spark", 5), ("Hi", 7)], 1)

# 准备RDD3
rdd3 = sc.parallelize([[1, 3, 5], [6, 7, 9], [11, 13, 11]], 1)

# 输出到文件中
rdd1.saveAsTextFile("D:/output1")
rdd2.saveAsTextFile("D:/output2")
rdd3.saveAsTextFile("D:/output3")

注意:

调用保存文件的算子,需要配置Hadoop依赖

下载Hadoop安装包:

http://archive.apache.org/dist/hadoop/common/hadoop-3.0.0/hadoop-3.0.0.tar.gz

解压到电脑任意位置

在Python代码中使用os模块配置:os.environ[‘HADOOP_HOME’] = ‘HADOOP解压文件夹路径’

下载winutils.exe,并放入Hadoop解压文件夹的bin目录内:https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/winutils.exe

下载hadoop.dll,并放入:C:/Windows/System32 文件夹内:https://raw.githubusercontent.com/steveloughran/winutils/master/hadoop-3.0.0/bin/hadoop.dll 

3. pyspark综合案例

from pyspark import SparkConf, SparkContext
import os
import json
os.environ['PYSPARK_PYTHON'] = 'D:/dev/python/python310/python.exe'
os.environ['HADOOP_HOME'] = "D:/dev/hadoop-3.0.0"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
conf.set("spark.default.parallelism", "1")
sc = SparkContext(conf=conf)

# 读取文件转换成RDD
file_rdd = sc.textFile("D:/search_log.txt")
# TODO 需求1: 热门搜索时间段Top3(小时精度)
# 1.1 取出全部的时间并转换为小时
# 1.2 转换为(小时, 1) 的二元元组
# 1.3 Key分组聚合Value
# 1.4 排序(降序)
# 1.5 取前3
result1 = file_rdd.map(lambda x: (x.split("\t")[0][:2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(3)
print("需求1的结果:", result1)

# TODO 需求2: 热门搜索词Top3
# 2.1 取出全部的搜索词
# 2.2 (词, 1) 二元元组
# 2.3 分组聚合
# 2.4 排序
# 2.5 Top3
result2 = file_rdd.map(lambda x: (x.split("\t")[2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(3)
print("需求2的结果:", result2)

# TODO 需求3: 统计老婆关键字在什么时段被搜索的最多
# 3.1 过滤内容,只保留关键词
# 3.2 转换为(小时, 1) 的二元元组
# 3.3 Key分组聚合Value
# 3.4 排序(降序)
# 3.5 取前1
result3 = file_rdd.map(lambda x: x.split("\t")).\
    filter(lambda x: x[2] == '老婆').\
    map(lambda x: (x[0][:2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(1)
print("需求3的结果:", result3)

# TODO 需求4: 将数据转换为JSON格式,写出到文件中
# 4.1 转换为JSON格式的RDD
# 4.2 写出为文件
file_rdd.map(lambda x: x.split("\t")).\
    map(lambda x: {"time": x[0], "user_id": x[1], "key_word": x[2], "rank1": x[3], "rank2": x[4], "url": x[5]}).\
    saveAsTextFile("D:/output_json")

4. 将案例提交到YARN集群中运行

提交命令:

bin/spark-submit --master yarn --num-executors 3 --queue root.teach --executor-cores 4 --executor-memory 4g /home/hadoop/demo.py

from pyspark import SparkConf, SparkContext
import os
os.environ['PYSPARK_PYTHON'] = '/export/server/anaconda3/bin/python'
os.environ['HADOOP_HOME'] = "/export/server/hadoop-3.3.1"
conf = SparkConf().setAppName("spark_cluster")
conf.set("spark.default.parallelism", "24")
sc = SparkContext(conf=conf)

# 读取文件转换成RDD
file_rdd = sc.textFile("hdfs://m1:8020/data/search_log.txt")
# TODO 需求1: 热门搜索时间段Top3(小时精度)
# 1.1 取出全部的时间并转换为小时
# 1.2 转换为(小时, 1) 的二元元组
# 1.3 Key分组聚合Value
# 1.4 排序(降序)
# 1.5 取前3
result1 = file_rdd.map(lambda x: (x.split("\t")[0][:2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(3)
print("需求1的结果:", result1)

# TODO 需求2: 热门搜索词Top3
# 2.1 取出全部的搜索词
# 2.2 (词, 1) 二元元组
# 2.3 分组聚合
# 2.4 排序
# 2.5 Top3
result2 = file_rdd.map(lambda x: (x.split("\t")[2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(3)
print("需求2的结果:", result2)

# TODO 需求3: 统计老婆关键字在什么时段被搜索的最多
# 3.1 过滤内容,只保留关键词
# 3.2 转换为(小时, 1) 的二元元组
# 3.3 Key分组聚合Value
# 3.4 排序(降序)
# 3.5 取前1
result3 = file_rdd.map(lambda x: x.split("\t")).\
    filter(lambda x: x[2] == '老婆').\
    map(lambda x: (x[0][:2], 1)).\
    reduceByKey(lambda a, b: a + b).\
    sortBy(lambda x: x[1], ascending=False, numPartitions=1).\
    take(1)
print("需求3的结果:", result3)

# TODO 需求4: 将数据转换为JSON格式,写出到文件中
# 4.1 转换为JSON格式的RDD
# 4.2 写出为文件
file_rdd.map(lambda x: x.split("\t")).\
    map(lambda x: {"time": x[0], "user_id": x[1], "key_word": x[2], "rank1": x[3], "rank2": x[4], "url": x[5]}).\
    saveAsTextFile("hdfs://m1:8020/output/output_json")

 (日常美图时间)

Python---pyspark中的数据输出(collect,reduce,take,count,saveAsTextFile),了解PySpark代码在大数据集群上运行_第1张图片

你可能感兴趣的:(初识python,大数据,spark,python,pycharm)