37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手试试多做实验,不管成功与否,都会记录下来——小小的进步或是搞不掂的问题,希望能够抛砖引玉。
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百八十七:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 128*64像素
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验一百八十一:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 132*64像素
项目之五:I2C 检测器 - 使用 BitBang_I2C 库扫描和识别 I2C 总线上的设备
实验开源代码
/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验一百八十一:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 132*64像素
项目之五:I2C 检测器 - 使用 BitBang_I2C 库扫描和识别 I2C 总线上的设备
实验接线:
oled模块 Ardunio Uno
GND---------GND接地线
VCC---------5V 接电源
SDA---------D6
SCL ------- D4
*/
// I2C Detector - scan and identify devices on an I2C bus using the BitBang_I2C library
//
// The purpose of this code is to provide a sample sketch which can serve
// to detect not only the addresses of I2C devices, but what type of device each one is.
// So far, I've added the 25 devices I've personally used or found to be reliably detected
// based on their register contents. I encourage people to do pull requests to add support
// for more devices to make this code have wider appeal.
// There are plenty of I2C devices which appear at fixed addresses, yet don't have unique
// "Who_Am_I" registers or other data to reliably identify them. It's certainly possible to
// write code which initializes these devices and tries to verify their identity. This can
// potentially damage them and would necessarily increase the code size. I would like to keep
// the size of this code small enough so that it can be included in many microcontroller
// projects where code space is scarce.
// Copyright (c) 2019 BitBank Software, Inc.
// Written by Larry Bank
// email: [email protected]
// Project started 25/02/2019
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// Uses my Bit Bang I2C library. You can find it here:
// https://github.com/bitbank2/BitBang_I2C
#include
// Arbitrary pins I used for testing with an ATmega328p
// Define as -1, -1 to use the Wire library over the default I2C interface
#define SDA_PIN A4
#define SCL_PIN A5
// M5Stack Atom Grove connector pin assignments
//#define SDA_PIN 32
//#define SCL_PIN 26
// M5Stack Atom internal I2C connected to the IMU
//#define SDA_PIN 25
//#define SCL_PIN 21
// M5Stack Core2 internal I2C
#define SDA_PIN 8
#define SCL_PIN 9
//
// If you don't need the explicit device names displayed, disable this code by
// commenting out the next line
//
#define SHOW_NAME
#ifdef SHOW_NAME
const char *szNames[] = {"Unknown","SSD1306","SH1106","VL53L0X","BMP180", "BMP280","BME280",
"MPU-60x0", "MPU-9250", "MCP9808","LSM6DS3", "ADXL345", "ADS1115","MAX44009",
"MAG3110", "CCS811", "HTS221", "LPS25H", "LSM9DS1","LM8330", "DS3231", "LIS3DH",
"LIS3DSH","INA219","SHT3X","HDC1080","MPU6886","BME680", "AXP202", "AXP192", "24AA02XEXX",
"DS1307", "MPU688X", "FT6236G", "FT6336G", "FT6336U", "FT6436", "BM8563","BNO055"};
#endif
BBI2C bbi2c;
void setup() {
Serial.begin(115200);
memset(&bbi2c, 0, sizeof(bbi2c));
bbi2c.bWire = 0; // use bit bang, not wire library
bbi2c.iSDA = SDA_PIN;
bbi2c.iSCL = SCL_PIN;
I2CInit(&bbi2c, 100000L);
delay(100); // allow devices to power up
}
void loop() {
uint8_t map[16];
uint8_t i;
int iDevice, iCount;
Serial.println("Starting I2C Scan");
I2CScan(&bbi2c, map); // get bitmap of connected I2C devices
if (map[0] == 0xfe) // something is wrong with the I2C bus
{
Serial.println("I2C pins are not correct or the bus is being pulled low by a bad device; unable to run scan");
}
else
{
iCount = 0;
for (i=1; i<128; i++) // skip address 0 (general call address) since more than 1 device can respond
{
if (map[i>>3] & (1 << (i & 7))) // device found
{
iCount++;
Serial.print("Device found at 0x");
Serial.print(i, HEX);
iDevice = I2CDiscoverDevice(&bbi2c, i);
Serial.print(", type = ");
#ifdef SHOW_NAME
Serial.println(szNames[iDevice]); // show the device name as a string
#else
Serial.println(iDevice); // show the device name as the enum index
#endif
}
} // for i
Serial.print(iCount, DEC);
Serial.println(" device(s) found");
}
delay(5000);
}
实验串口返回情况
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验一百八十一:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 132*64像素
项目之六:动画:一匹走路的狼
Arduino实验场景图
实验场景图 动态图
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验一百八十一:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 132*64像素
项目之七:显示文字与图形
实验开源代码
/*
【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程)
实验一百八十一:1.3寸OLED液晶屏 I2C IIC通信 4针模块 1106/1306驱动 132*64像素
项目之七:显示文字与图形
实验接线:
oled模块 Ardunio Uno
GND---------GND接地线
VCC---------5V 接电源
SDA---------A4
SCL ------- A5
*/
#include
// Use -1 for the Wire library default pins
// or specify the pin numbers to use with the Wire library or bit banging on any GPIO pins
// These are reversed because I did straight-through wiring for my SSD1306
// and it has the 4-pin header as GND,VCC,SCL,SDA, but the GROVE connector is
// GND,VCC,SDA,SCL
#define GROVE_SDA_PIN A4
#define GROVE_SCL_PIN A5
// Set this to -1 to disable or the GPIO pin number connected to the reset
// line of your display if it requires an external reset
#define RESET_PIN -1
// let ss_oled figure out the display address
#define OLED_ADDR -1
// don't rotate the display
#define FLIP180 0
// don't invert the display
#define INVERT 0
// Bit-Bang the I2C bus
#define USE_HW_I2C 1
// Change this if you're using different OLED displays
#define MY_OLED OLED_128x64
uint8_t ucBackBuffer[1024];
// The SSOLED structure. Each structure is about 56 bytes
// There is no limit to the number of simultaneous displays which can be controlled by ss_oled
SSOLED ssoled;
void setup() {
char *msgs[] = {(char *)"SSD1306 @ 0x3C", (char *)"SSD1306 @ 0x3D",(char *)"SH1106 @ 0x3C",(char *)"SH1106 @ 0x3D"};
int rc;
// The I2C SDA/SCL pins set to -1 means to use the default Wire library
// If pins were specified, they would be bit-banged in software
// This isn't inferior to hw I2C and in fact allows you to go faster on certain CPUs
// The reset pin is optional and I've only seen it needed on larger OLEDs (2.4")
// that can be configured as either SPI or I2C
//
// oledInit(SSOLED *, type, oled_addr, rotate180, invert, bWire, SDA_PIN, SCL_PIN, RESET_PIN, speed)
rc = oledInit(&ssoled, MY_OLED, OLED_ADDR, FLIP180, INVERT, USE_HW_I2C, GROVE_SDA_PIN, GROVE_SCL_PIN, RESET_PIN, 800000L); // use standard I2C bus at 400Khz
if (rc != OLED_NOT_FOUND)
{
oledFill(&ssoled, 0, 1);
oledWriteString(&ssoled, 0,0,0,msgs[rc], FONT_NORMAL, 0, 1);
delay(2000);
}
else
{
while (1) {};
}
oledSetBackBuffer(&ssoled, ucBackBuffer);
} /* setup() */
#define DRAW_ELLIPSES
#define DRAW_RECTS
void loop() {
int i, x, y, x2, y2, r1, r2;
uint8_t ucColor;
#ifdef DRAW_ELLIPSES
oledFill(&ssoled, 0, 1);
oledWriteString(&ssoled, 0, 0, 0, (char *)"Ellipses", FONT_NORMAL, 0, 1);
delay(2000);
oledFill(&ssoled, 0, 1);
for (i=0; i<100; i++)
{
x = random(128);
y = random(64);
r1 = random(64);
r2 = random(32);
oledEllipse(&ssoled, x, y, r1, r2, 1, 0);
oledDumpBuffer(&ssoled, NULL);
}
oledFill(&ssoled, 0, 1);
oledWriteString(&ssoled, 0, 0, 0, (char *)"Filled Ellipses", FONT_NORMAL, 0, 1);
delay(2000);
oledFill(&ssoled, 0, 1);
for (i=0; i<100; i++)
{
x = random(128);
y = random(64);
r1 = random(64);
r2 = random(32);
ucColor = random(2);
oledEllipse(&ssoled, x, y, r1, r2, ucColor, 1);
oledDumpBuffer(&ssoled, NULL);
}
#endif // DRAW_ELLIPSES
#ifdef DRAW_RECTS
oledFill(&ssoled, 0, 1);
oledWriteString(&ssoled, 0, 0, 0, (char *)"Rectangles", FONT_NORMAL, 0, 1);
delay(2000);
oledFill(&ssoled, 0, 1);
for (i=0; i<100; i++)
{
x = random(128);
y = random(64);
x2 = random(128);
y2 = random(64);
oledRectangle(&ssoled, x, y, x2, y2, 1, 0);
oledDumpBuffer(&ssoled, NULL);
}
oledFill(&ssoled, 0, 1);
oledWriteString(&ssoled, 0, 0, 0, (char *)"Filled Rects", FONT_NORMAL, 0, 1);
delay(2000);
oledFill(&ssoled, 0, 1);
for (i=0; i<100; i++)
{
x = random(128);
y = random(64);
x2 = random(128);
y2 = random(64);
ucColor = random(2);
oledRectangle(&ssoled, x, y, x2, y2, ucColor, 1);
oledDumpBuffer(&ssoled, NULL);
}
#endif // DRAW_RECTS
delay(4000);
} /* loop() */