一本通 1267:【例9.11】01背包问题(详细代码+严谨思路+清晰图片) C++

一本通 1267:【例9.11】01背包问题(详细代码+严谨思路+清晰图片) C++_第1张图片

经典01背包问题

这里给你3种方法


目录

DFS

思路:

代码:

DFS+记忆化

思路:

代码:

动态规划

思路:

代码:


DFS

时间复杂度 :O(2^n)

思路:

DFS求出所有选法,再用ans记录价格最大值

由于此题数据量较小(其实2^30=1073741824,这种做法是过不了的,是题目数据比较水^_^)

代码:

//【例9.11】01背包问题
#include 
#include 

using namespace std;

const int N = 35;

int n, m, ans;//n 容量    m 物品
int w[N], v[N]; //w 第i件物品的重量(代价)   v 第i件物品的价值

//idx 物品编号   resw 背包剩余容量   sumv 当前决策下的总价值
void dfs(int idx, int resw, int sumv) {
	if (idx == n + 1) {
		ans = max(ans, sumv);
		return ;
	}

	//不选
	dfs(idx + 1, resw, sumv);
	//选
	if (resw >= w[idx])
		dfs(idx + 1, resw - w[idx], sumv + v[idx]);
}

int main() {
	cin >> m >> n;

	for (int i = 1; i <= n; i ++)
		cin >> w[i] >> v[i];

	dfs(1, m, 0);

	cout << ans;
	return 0;
}
/*
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
12
*/

如果在考试遇到这种01背包题目DFS是肯定拿不了满分的


DFS+记忆化

时间复杂度:O(nm)

针对上一个做法 纯·DFS 有可能会超时的情况我们推出了加上记忆化的版本

思路:

我们分析一下为什么 纯·DFS 做法会超时

我们用一个小样例自己推一下

一本通 1267:【例9.11】01背包问题(详细代码+严谨思路+清晰图片) C++_第2张图片

 先不管答案是什么,我们发现dfs(1, 5)出现了多次

如果样例再大一点就会有很多重复子问题

重复子问题 ?想到什么了?对了,用记忆化存储状态!

只要在上一种方法的代码加上一个二维dp数组存储状态就能起到优化时间复杂度的作用

dp[i][j] 代表 用前i件物品来装容量为j的背包所能得到的最大价值

代码:

//【例9.11】01背包问题
#include 
#include 

using namespace std;

const int N = 35, M = 205;

int n, m;//n 容量    m 物品
int w[N], v[N]; //w 第i件物品的重量(代价)   v 第i件物品的价值

/*
idx 物品编号   resw 背包剩余容量
	如果
	第i件物品不选
		dfs(i, j) = dfs(i - 1, j)
	第i件物品选
		dfs(i, j) = dfs(i - 1, j - w[i]) + v[i]
*/
int dp[N][M];
int dfs(int idx, int resw) {
	//用前i件物品来装容量为j的背包所能得到的最大价值
	if (!idx)
		return 0;
	if (dp[idx][resw] != -1)
		return dp[idx][resw];

	//不选
	int maxn = dfs(idx - 1, resw);
	//选
	if (resw >= w[idx])
		maxn = max(maxn, dfs(idx - 1, resw - w[idx]) + v[idx]);

	return dp[idx][resw] = maxn;
}

int main() {
	cin >> m >> n;

	for (int i = 1; i <= n; i ++)
		cin >> w[i] >> v[i];

	memset(dp, -1, sizeof dp);

	cout << dfs(n, m);
	return 0;
}
/*
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
12
*/

动态规划

时间复杂度:O(nm)

思路:

其实也就是把 DFS+记忆化 改成递推形式,在上一种方法的代码里也已经透露了状态转移方程

第i件物品不选
	dp[i, j] = dp[i - 1, j]
第i件物品选
	dp[i, j] = dp[i - 1, j - w[i]] + v[i]

代码:

//【例9.11】01背包问题   O(nm)
#include 
#include 

using namespace std;

const int N = 35, M = 205;

int n, m;//n 容量    m 物品
int w[N], v[N]; //w 第i件物品的重量(代价)   v 第i件物品的价值
int dp[N][M];

int main() {
	cin >> m >> n;

	for (int i = 1; i <= n; i ++)
		cin >> w[i] >> v[i];

	/*
	dp[i, j] 用前i件物品来装容量为j的背包所能得到的最大价值
	第i件物品不选
		dp[i, j] = dp[i - 1, j]
	第i件物品选
		dp[i, j] = dp[i - 1, j - w[i]] + v[i]
	*/
	for (int i = 1; i <= n; i ++) {
		for (int j = 0; j <= m; j ++) {
			dp[i][j] = dp[i - 1][j]; //不选
			if (j >= w[i]) //可选
				dp[i][j] = max(dp[i][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
	cout << dp[n][m];
	return 0;
}
/*
【输入样例】
10 4
2 1
3 3
4 5
7 9
【输出样例】
12
*/

代码可以拿走,请把赞留下

原题链接:信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

你可能感兴趣的:(一本通,c++,动态规划,深度优先)