线性代数(二) 矩阵及其运算

前言

行列式det(A) 其实表示的只是一个值 ∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b\\ c & d\end{vmatrix} = ad -bc acbd =adbc,其基本变化是基于这个值是不变。而矩阵表示的是一个数表。

定义

线性代数(二) 矩阵及其运算_第1张图片
矩阵与线性变换的关系线性代数(二) 矩阵及其运算_第2张图片线性代数(二) 矩阵及其运算_第3张图片
即得
( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) ( x 1 x 2 . . . x n ) = ( y 1 y 2 . . . y n ) \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} \begin{pmatrix} x_1\\x_2\\...\\x_n\end{pmatrix} = \begin{pmatrix} y_1\\y_2\\...\\y_n\end{pmatrix} a11a21...am1a12a22...am2............a1na2n....amn x1x2...xn = y1y2...yn
可以推矩阵乘法
线性代数(二) 矩阵及其运算_第4张图片
即得中的 y 1 = c 11 = a 11 x 1 + a 12 x 2 + . . . + a 1 n x m y_1=c_{11}=a_{11}x_1+a_{12}x_2+...+a_{1n}x_m y1=c11=a11x1+a12x2+...+a1nxm

矩阵乘法的提前: 第一个矩阵的列数和第二个矩阵的行数相同

同理可得矩阵加法
线性代数(二) 矩阵及其运算_第5张图片

增广矩阵

线性代数(二) 矩阵及其运算_第6张图片
( a 11 a 12 . . . a 1 n y 1 a 21 a 22 . . . a 2 n y 2 . . . . . . . . . . . . . . . . . a m 1 a m 2 . . . a m n y n ) ( x 1 x 2 . . . x n − 1 ) = 0 \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n} & y_1\\ a_{21} & a_{22} & ...& a_{2n}& y_2\\ ... & ... & ...& .... & ....\\ a_{m1} & a_{m2} & ...& a_{mn} & y_n\end{pmatrix} \begin{pmatrix} x_1\\x_2\\...\\x_n\\-1\end{pmatrix} = 0 a11a21...am1a12a22...am2............a1na2n....amny1y2....yn x1x2...xn1 =0

特殊的矩阵

线性代数(二) 矩阵及其运算_第7张图片
线性代数(二) 矩阵及其运算_第8张图片
线性代数(二) 矩阵及其运算_第9张图片

矩阵的初等变换

线性代数(二) 矩阵及其运算_第10张图片
行和列的关系
( x 1 x 2 . . . x n ) ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) = ( y 1 y 2 . . y n ) \begin{pmatrix} x_1&x_2&...&x_n\end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} = \begin{pmatrix} y_1&y_2&..&y_n\end{pmatrix} (x1x2...xn) a11a12...a1na21a22...a2n............am1am2....amn =(y1y2..yn)

线性代数(二) 矩阵及其运算_第11张图片
线性代数(二) 矩阵及其运算_第12张图片

初等变换与矩阵乘法的关系

线性代数(二) 矩阵及其运算_第13张图片
线性代数(二) 矩阵及其运算_第14张图片
E m ( i , j ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m 的 i 行与 j 行对调 ( 1 0 . . . 0 0 0 0 . . . 1 i 行 0 . . . . . . . . . . . . . . . . . 0 1 j 行 . . . 0 0 0 0 . . . 0 1 ) m E_m(i,j)=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行与j行对调 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 0 & ...& 1_{i行}& 0\\ ... & ... & ...& ....& ....\\ 0 & 1_{j行} & ...& 0& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i,j)= 10...0001i...00...............00....1j000....01 mi行与j行对调 10...0000...1j0...............01i....0000....01 m
E m ( i ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m 的 i 行乘于常数 k ( 1 0 . . . 0 0 0 k i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m E_m(i(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行乘于常数k \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & k_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i(k))= 10...0001i...00...............00....1000....01 mi行乘于常数k 10...000ki...00...............00....1000....01 m
E m ( i j ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m i 行的 k 倍加到 j 上 ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 k j 行 . . . 1 j 行 0 0 0 . . . 0 1 ) m E_m(ij(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m i行的k倍加到j上 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & k_{j行} & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(ij(k))= 10...0001i...00...............00....1j000....01 mi行的k倍加到j 10...0001i...kj0...............00....1j000....01 m
线性代数(二) 矩阵及其运算_第15张图片
线性代数(二) 矩阵及其运算_第16张图片

矩阵的运算

线性代数(二) 矩阵及其运算_第17张图片

矩阵乘法运算规律

线性代数(二) 矩阵及其运算_第18张图片

矩阵的转置

线性代数(二) 矩阵及其运算_第19张图片
A n ∗ m ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) 转置为 A n ∗ m T ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) A_{n*m} \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} 转置为 A_{n*m}^T \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} Anm a11a21...am1a12a22...am2............a1na2n....amn 转置为AnmT a11a12...a1na21a22...a2n............am1am2....amn

例如:矩阵 B = ( 1 2 3 4 5 6 ) B = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\end{pmatrix} B=(142536)的转置矩阵就是 B T = ( 1 4 2 5 3 6 ) B^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6\end{pmatrix} BT= 123456

反对称矩阵

线性代数(二) 矩阵及其运算_第20张图片

方阵的行列式

线性代数(二) 矩阵及其运算_第21张图片

伴随矩阵

线性代数(二) 矩阵及其运算_第22张图片
根据行列式和矩阵乘法的公式刚好得出 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE

可逆矩阵(或称非奇异矩阵)

线性代数(二) 矩阵及其运算_第23张图片
结合伴随矩阵的公式
线性代数(二) 矩阵及其运算_第24张图片

  1. 根据 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE
  2. 结合行列式公式 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
  3. 得出 ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ |A||A*|=|A| A∣∣A=A
  4. 得出 ∣ A ∗ ∣ = 1 |A^*|=1 A=1
  5. 所以 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\cfrac{1}{|A|} A1=A1

线性代数(二) 矩阵及其运算_第25张图片
线性代数(二) 矩阵及其运算_第26张图片

共轭矩阵

  1. a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
  2. 共轭复数,两个实部相等,虚部互为相反数的复数,即 a-bi

举例:线性代数(二) 矩阵及其运算_第27张图片
线性代数(二) 矩阵及其运算_第28张图片

分块矩阵

线性代数(二) 矩阵及其运算_第29张图片
线性代数(二) 矩阵及其运算_第30张图片

上述指将矩阵按行或者列分块线性代数(二) 矩阵及其运算_第31张图片

分块矩阵的其它性质

线性代数(二) 矩阵及其运算_第32张图片

利用初等变化转为对角矩阵,方便计算

克拉默法则证明

线性代数(二) 矩阵及其运算_第33张图片

  1. 把方程组写成矩阵方程 Ax = b, 这里 A = ( a i j ) n ∗ n A=(a_{ij})_{n*n} A=(aij)nn为 n 阶矩阵
  2. 因 |A| ≠ 0,故 A − 1 A^{-1} A1存在。令 x = A − 1 b ⇒ A x = A A − 1 b x=A^{-1}b \Rightarrow Ax=AA^{-1}b x=A1bAx=AA1b,表明 x = A − 1 b x=A^{-1}b x=A1b是方程组的解向量。
  3. 由于逆矩阵公式 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\cfrac{1}{|A|}A^* A1=A1A,有 x = 1 ∣ A ∣ A ∗ b x=\cfrac{1}{|A|}A^*b x=A1Ab
  4. 线性代数(二) 矩阵及其运算_第34张图片
  5. x j = 1 ∣ A ∣ ( b 1 A 1 j + b 2 A 2 j + . . . + b n A n j ) x_j=\cfrac{1}{|A|}(b_1A_{1j} + b_2A_{2j}+...+b_nA_{nj}) xj=A1(b1A1j+b2A2j+...+bnAnj)
  6. x j = 1 ∣ A ∣ ∣ A j ∣ ( j = 1 , 2 , 3 , . . . n ) x_j=\cfrac{1}{|A|}|A_j| (j=1,2,3,...n) xj=A1Aj(j=1,2,3,...n)

分块矩阵乘法证明

线性代数(二) 矩阵及其运算_第35张图片
我们通过验证分块矩阵乘法得到的元素与通用乘法得到元素是否一致,来证明分块乘法的可靠性,以 c 32 c_{32} c32为例:
c 32 = ( a 31 a 32 a 33 ) ( b 12 b 22 b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} &a_{33} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \\b_{32} \end{pmatrix} c32=(a31a32a33) b12b22b32
与他对应是 C 11 = A 11 B 11 + A 12 B 21 C_{11}=A_{11}B_{11}+A_{12}B_{21} C11=A11B11+A12B21中的 c 32 c_{32} c32
c 32 = ( a 31 a 32 ) ( b 12 b 22 ) + ( a 33 ) ( b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \end{pmatrix} + \begin{pmatrix} a_{33} \end{pmatrix} \begin{pmatrix} b_{32} \end{pmatrix} c32=(a31a32)(b12b22)+(a33)(b32)

主要参考

《矩阵的转置》
《克拉默法则》
《共轭矩阵》
《分块矩阵的初等变换(3)行列式不变吗?》
《矩阵分块乘法的原理是怎么样的?》

你可能感兴趣的:(#,数学基础,线性代数,矩阵)