JAX: 库安装和GPU使用,解决不能识别gpu问题

  • JAX库安装后只能看到cpu 设备;
  • 主要问题是cudacudnn版本匹配问题;
  • github一堆issues,类似这个https://github.com/google/jax/issues/971,
    直接从装https://storage.googleapis.com/jax-releases下载轮子文件安装,pip install --upgrade -f https://xxxxxxxx ; 均失败;

问题描述:
安装完jaxjaxlib之后,

from jax.lib import xla_bridge
print(xla_bridge.get_backend().platform)

只显示cpu设备,但安装的torch和tensorflow都可以看到gpu;
JAX: 库安装和GPU使用,解决不能识别gpu问题_第1张图片

经历了一番重复性操作,卸载换版本、再看看cuda、安装卸载、换版本、安装、pip安装、下载wheel安装。。。。最后总算对了。

前面都是废话,正文从下面开始

  1. 查看显卡信息,确认cuda版本最大为11.3nvcc --version的结果给我10.3)
nvidia-smi
Tue Jul 12 22:26:26 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 465.19.01    Driver Version: 465.19.01    CUDA Version: 11.3     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:84:00.0 Off |                  N/A |
| 41%   34C    P8    21W / 260W |     95MiB / 11016MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1729      G   /usr/lib/xorg/Xorg                 73MiB |
|    0   N/A  N/A      1937      G   /usr/bin/gnome-shell               13MiB |
|    0   N/A  N/A   2304356      G   gnome-control-center                3MiB |
+-----------------------------------------------------------------------------+
  1. .wheel文件都google.storage里翻了半天,发现还有带cudnn信息都轮子文件,还不能安装太旧的jax,会和其他库冲突;
    JAX: 库安装和GPU使用,解决不能识别gpu问题_第2张图片
  • 去看看自己的cudnn版本,在/usr/local/cuda-11.3/include/cudnn_version.h文件里,
    确认是cudnn82
    > #define CUDNN_MAJOR 8
    > #define CUDNN_MINOR 2

  • 再对上自己的python=3.8

(base) xxxx:~$ cat /usr/local/cuda-11.3/include/cudnn_version.h
/*
 * Copyright 2019 NVIDIA Corporation.  All rights reserved.
 *
 * NOTICE TO LICENSEE:
 *
 * This source code and/or documentation ("Licensed Deliverables") are
 * subject to NVIDIA intellectual property rights under U.S. and
 * international Copyright laws.
 *
 * These Licensed Deliverables contained herein is PROPRIETARY and
 * CONFIDENTIAL to NVIDIA and is being provided under the terms and
 * conditions of a form of NVIDIA software license agreement by and
 * between NVIDIA and Licensee ("License Agreement") or electronically
 * accepted by Licensee.  Notwithstanding any terms or conditions to
 * the contrary in the License Agreement, reproduction or disclosure
 * of the Licensed Deliverables to any third party without the express
 * written consent of NVIDIA is prohibited.
 *
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
 * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE.  IT IS
 * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
 * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
 * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
 * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
 * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THESE LICENSED DELIVERABLES.
 *
 * U.S. Government End Users.  These Licensed Deliverables are a
 * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
 * 1995), consisting of "commercial computer software" and "commercial
 * computer software documentation" as such terms are used in 48
 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
 * only as a commercial end item.  Consistent with 48 C.F.R.12.212 and
 * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
 * U.S. Government End Users acquire the Licensed Deliverables with
 * only those rights set forth herein.
 *
 * Any use of the Licensed Deliverables in individual and commercial
 * software must include, in the user documentation and internal
 * comments to the code, the above Disclaimer and U.S. Government End
 * Users Notice.
 */

/**
 * \file: The master cuDNN version file.
 */

#ifndef CUDNN_VERSION_H_
#define CUDNN_VERSION_H_

#define CUDNN_MAJOR 8
#define CUDNN_MINOR 2
#define CUDNN_PATCHLEVEL 0

#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#endif /* CUDNN_VERSION_H */
  1. pip uninstall jax jaxlib, 再去安装对的版本即可。(切记一定要先卸载!先卸载!再安装!
pip install --upgrade jax==0.3.14 jaxlib==0.3.14+cuda11.cudnn82 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

Looking in links: https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
Collecting jax==0.3.14
  Using cached jax-0.3.14-py3-none-any.whl
Collecting jaxlib==0.3.14+cuda11.cudnn82
  Downloading https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.3.14%2Bcuda11.cudnn82-cp38-none-manylinux2014_x86_64.whl (161.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 161.9/161.9 MB 2.6 MB/s eta 0:00:00
Requirement already satisfied: absl-py in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (1.1.0)
Requirement already satisfied: numpy>=1.19 in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (1.23.1)
Requirement already satisfied: scipy>=1.5 in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (1.5.2)
Requirement already satisfied: typing-extensions in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (4.3.0)
Requirement already satisfied: opt-einsum in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (3.3.0)
Requirement already satisfied: etils[epath] in ./anaconda3/lib/python3.8/site-packages (from jax==0.3.14) (0.6.0)
Requirement already satisfied: flatbuffers<3.0,>=1.12 in ./anaconda3/lib/python3.8/site-packages (from jaxlib==0.3.14+cuda11.cudnn82) (1.12)
Requirement already satisfied: zipp in ./anaconda3/lib/python3.8/site-packages (from etils[epath]->jax==0.3.14) (3.4.0)
Requirement already satisfied: importlib_resources in ./anaconda3/lib/python3.8/site-packages (from etils[epath]->jax==0.3.14) (5.1.2)
Installing collected packages: jaxlib, jax
Successfully installed jax-0.3.14 jaxlib-0.3.14+cuda11.cudnn82

JAX: 库安装和GPU使用,解决不能识别gpu问题_第3张图片

你可能感兴趣的:(python,python)