代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III

198.打家劫舍

198.打家劫舍

思路:

仔细一想,当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。

所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。

  1. 确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

  1. dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

代码如下:

vector dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
  1. 确定遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

for (int i = 2; i < nums.size(); i++) {
    dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
  1. 举例推导dp数组

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III_第1张图片

代码:

python

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        '''
        动态规划:当前的状态依赖于上一次的结果

        '''
class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        '''
        动态规划:当前的状态依赖于上一次的结果

        '''
        if len(nums) == 1:
            return nums[0]
        if len(nums) == 0:
            return 0

        dp = [0] * len(nums)
        dp[0] = nums[0]
        dp[1] = max(nums[0], nums[1])

        for i in range(2, len(nums)):
            dp[i] = max(dp[i-1], dp[i-2] + nums[i])

        return dp[-1]

213.打家劫舍II

思想:

唯一区别就是成环了。

对于一个数组,成环的话主要有如下三种情况:

情况一:考虑不包含首尾元素

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III_第2张图片
情况二:考虑包含首元素,不包含尾元素

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III_第3张图片

情况三:考虑包含尾元素,不包含首元素

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III_第4张图片
情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。

代码:

python

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        if len(nums) == 1:
            return nums[0]
        
        result1 = self.robRange(nums, 0, len(nums) - 2)  # 情况二
        result2 = self.robRange(nums, 1, len(nums) - 1)  # 情况三
        return max(result1, result2)
    # 198.打家劫舍的逻辑
    def robRange(self, nums, start, end):
        if end == start:
            return nums[start]
        
        prev_max = nums[start]
        curr_max = max(nums[start], nums[start + 1])
        
        for i in range(start + 2, end + 1):
            temp = curr_max
            curr_max = max(prev_max + nums[i], curr_max)
            prev_max = temp
        
        return curr_max

337.打家劫舍III

思路:

动态规划

动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。

  1. 确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

数为当前节点,代码如下:

vector robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数。

如果还不理解的话,就接着往下看,看到代码就理解了哈。

  1. 确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector{0, 0};

这也相当于dp数组的初始化

  1. 确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector left = robTree(cur->left); // 左
vector right = robTree(cur->right); // 右
// 中
  1. 确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector left = robTree(cur->left); // 左
vector right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  1. 举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)

代码随想录算法训练营第51天|动态规划part09|198.打家劫舍、213.打家劫舍II、337.打家劫舍III_第5张图片
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。

递归三部曲与动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int rob(TreeNode* root) {
        vector result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector robTree(TreeNode* cur) {
        if (cur == NULL) return vector{0, 0};
        vector left = robTree(cur->left);
        vector right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};

时间复杂度:O(n),每个节点只遍历了一次
空间复杂度:O(log n),算上递推系统栈的空间

代码:

python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rob(self, root: Optional[TreeNode]) -> int:
        # dp数组(dp table)以及下标的含义:
        # 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
        # 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
        dp = self.traversal(root)
        return max(dp)

    # 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
    def traversal(self, node):
        
        # 递归终止条件,就是遇到了空节点,那肯定是不偷的
        if not node:
            return (0, 0)

        left = self.traversal(node.left)
        right = self.traversal(node.right)

        # 不偷当前节点, 偷子节点
        val_0 = max(left[0], left[1]) + max(right[0], right[1])

        # 偷当前节点, 不偷子节点
        val_1 = node.val + left[0] + right[0]

        return (val_0, val_1)

你可能感兴趣的:(算法,动态规划)