了解的运作原理之后,就可以开始使用Semantic Kernel来制作应用了。
Semantic Kernel将embedding的功能封装到了Memory中,用来存储上下文信息,就好像电脑的内存一样,而LLM就像是CPU一样,我们所需要做的就是从内存中取出相关的信息交给CPU处理就好了。
使用Memory需要注册 embedding
模型,目前使用的就是 text-embedding-ada-002
。同时需要为Kernel添加MemoryStore,用于存储更多的信息,这里Semantic Kernel提供了一个 VolatileMemoryStore
,就是一个普通的内存存储的MemoryStore。
var kernel = Kernel.Builder.Configure(c => |
|
{ |
|
c.AddOpenAITextCompletionService("openai", "text-davinci-003", Environment.GetEnvironmentVariable("MY_OPEN_AI_API_KEY")); |
|
c.AddOpenAIEmbeddingGenerationService("openai", "text-embedding-ada-002", Environment.GetEnvironmentVariable("MY_OPEN_AI_API_KEY")); |
|
}) |
|
.WithMemoryStorage(new VolatileMemoryStore()) |
|
.Build(); |
完成了基础信息的注册后,就可以往Memroy中存储信息了。
const string MemoryCollectionName = "aboutMe"; |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info1", text: "My name is Andrea"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info2", text: "I currently work as a tourist operator"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info3", text: "I currently live in Seattle and have been living there since 2005"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info4", text: "I visited France and Italy five times since 2015"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info5", text: "My family is from New York"); |
SaveInformationAsync
会将text的内容通过 embedding
模型转化为对应的文本向量,存放在的MemoryStore中。其中CollectionName如同数据库的表名,Id就是Id。
完成信息的存储之后,就可以用来语义搜索了。
直接使用Memory.SearchAsync
方法,指定对应的Collection,同时提供相应的查询问题,查询问题也会被转化为embedding,再在MemoryStore中计算查找最相似的信息。
var questions = new[] |
|
{ |
|
"what is my name?", |
|
"where do I live?", |
|
"where is my family from?", |
|
"where have I travelled?", |
|
"what do I do for work?", |
|
}; |
|
foreach (var q in questions) |
|
{ |
|
var response = await kernel.Memory.SearchAsync(MemoryCollectionName, q).FirstOrDefaultAsync(); |
|
Console.WriteLine(q + " " + response?.Metadata.Text); |
|
} |
|
// output |
|
/* |
|
what is my name? My name is Andrea |
|
where do I live? I currently live in Seattle and have been living there since 2005 |
|
where is my family from? My family is from New York |
|
where have I travelled? I visited France and Italy five times since 2015 |
|
what do I do for work? I currently work as a tourist operator |
|
*/ |
到这个时候,即便不需要进行总结归纳,光是这样的语义查找,都会很有价值。
除了添加信息以外,还可以添加引用,像是非常有用的参考链接之类的。
const string memoryCollectionName = "SKGitHub"; |
|
var githubFiles = new Dictionary |
|
{ |
|
["https://github.com/microsoft/semantic-kernel/blob/main/README.md"] |
|
= "README: Installation, getting started, and how to contribute", |
|
["https://github.com/microsoft/semantic-kernel/blob/main/samples/notebooks/dotnet/2-running-prompts-from-file.ipynb"] |
|
= "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function", |
|
["https://github.com/microsoft/semantic-kernel/blob/main/samples/notebooks/dotnet/Getting-Started-Notebook.ipynb"] |
|
= "Jupyter notebook describing how to get started with the Semantic Kernel", |
|
["https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT"] |
|
= "Sample demonstrating how to create a chat skill interfacing with ChatGPT", |
|
["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/src/SemanticKernel/Memory/Volatile/VolatileMemoryStore.cs"] |
|
= "C# class that defines a volatile embedding store", |
|
["https://github.com/microsoft/semantic-kernel/tree/main/samples/dotnet/KernelHttpServer/README.md"] |
|
= "README: How to set up a Semantic Kernel Service API using Azure Function Runtime v4", |
|
["https://github.com/microsoft/semantic-kernel/tree/main/samples/apps/chat-summary-webapp-react/README.md"] |
|
= "README: README associated with a sample starter react-based chat summary webapp", |
|
}; |
|
foreach (var entry in githubFiles) |
|
{ |
|
await kernel.Memory.SaveReferenceAsync( |
|
collection: memoryCollectionName, |
|
description: entry.Value, |
|
text: entry.Value, |
|
externalId: entry.Key, |
|
externalSourceName: "GitHub" |
|
); |
|
} |
同样的,使用SearchAsync搜索就行。
string ask = "I love Jupyter notebooks, how should I get started?"; |
|
Console.WriteLine("===========================\n" + |
|
"Query: " + ask + "\n"); |
|
var memories = kernel.Memory.SearchAsync(memoryCollectionName, ask, limit: 5, minRelevanceScore: 0.77); |
|
var i = 0; |
|
await foreach (MemoryQueryResult memory in memories) |
|
{ |
|
Console.WriteLine($"Result {++i}:"); |
|
Console.WriteLine(" URL: : " + memory.Metadata.Id); |
|
Console.WriteLine(" Title : " + memory.Metadata.Description); |
|
Console.WriteLine(" ExternalSource: " + memory.Metadata.ExternalSourceName); |
|
Console.WriteLine(" Relevance: " + memory.Relevance); |
|
Console.WriteLine(); |
|
} |
|
//output |
|
/* |
|
=========================== |
|
Query: I love Jupyter notebooks, how should I get started? |
|
Result 1: |
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/notebooks/dotnet/Getting-Started-Notebook.ipynb |
|
Title : Jupyter notebook describing how to get started with the Semantic Kernel |
|
ExternalSource: GitHub |
|
Relevance: 0.8677381632778319 |
|
Result 2: |
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/notebooks/dotnet/2-running-prompts-from-file.ipynb |
|
Title : Jupyter notebook describing how to pass prompts from a file to a semantic skill or function |
|
ExternalSource: GitHub |
|
Relevance: 0.8162989178955157 |
|
Result 3: |
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/README.md |
|
Title : README: Installation, getting started, and how to contribute |
|
ExternalSource: GitHub |
|
Relevance: 0.8083238591883483 |
|
*/ |
这里多使用了两个参数,一个是limit,用于限制返回信息的条数,只返回最相似的前几条数据,另外一个是minRelevanceScore,限制最小的相关度分数,这个取值范围在0.0 ~ 1.0 之间,1.0意味着完全匹配。
将Memory的存储、搜索功能和语义技能相结合,就可以快速的打造一个实用的语义问答的应用了。
只需要将搜索到的相关信息内容填充到 prompt中,然后将内容和问题都抛给LLM,就可以等着得到一个满意的答案了。
const string MemoryCollectionName = "aboutMe"; |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info1", text: "My name is Andrea"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info2", text: "I currently work as a tourist operator"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info3", text: "I currently live in Seattle and have been living there since 2005"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info4", text: "I visited France and Italy five times since 2015"); |
|
await kernel.Memory.SaveInformationAsync(MemoryCollectionName, id: "info5", text: "My family is from New York"); |
|
var prompt = |
|
""" |
|
It can give explicit instructions or say 'I don't know' if it does not have an answer. |
|
Information about me, from previous conversations: |
|
{{ $fact }} |
|
User: {{ $ask }} |
|
ChatBot: |
|
"""; |
|
var skill = kernel.CreateSemanticFunction(prompt); |
|
var ask = "Hello, I think we've met before, remember? my name is..."; |
|
var fact = await kernel.Memory.SearchAsync(MemoryCollectionName,ask).FirstOrDefaultAsync(); |
|
var context = kernel.CreateNewContext(); |
|
context["fact"] = fact?.Metadata?.Text; |
|
context["ask"] = ask; |
|
var resultContext =await skill.InvokeAsync(context); |
|
resultContext.Result.Dump(); |
|
//output |
|
/* |
|
Hi there! Yes, I remember you. Your name is Andrea, right? |
|
*/ |
|
由于这种场景太常见了,所以Semantic Kernel中直接提供了一个技能TextMemorySkill,通过Function调用的方式简化了搜索的过程。
// .. SaveInformations |
|
// TextMemorySkill provides the "recall" function |
|
kernel.ImportSkill(new TextMemorySkill()); |
|
var prompt = |
|
""" |
|
It can give explicit instructions or say 'I don't know' if it does not have an answer. |
|
Information about me, from previous conversations: |
|
{{ recall $ask }} |
|
User: {{ $ask }} |
|
ChatBot: |
|
"""; |
|
var skill = kernel.CreateSemanticFunction(prompt); |
|
var ask = "Hello, I think we've met before, remember? my name is..."; |
|
var context = kernel.CreateNewContext(); |
|
context["ask"] = ask; |
|
context[TextMemorySkill.CollectionParam] = MemoryCollectionName; |
|
var resultContext =await skill.InvokeAsync(context); |
|
resultContext.Result.Dump(); |
|
// output |
|
/* |
|
Hi there! Yes, I remember you. Your name is Andrea, right? |
|
*/ |
这里直接使用 recall 方法,将问题传给了 TextMemorySkill,搜索对应得到结果,免去了手动搜索注入得过程。
VolatileMemoryStore
本身也是易丢失的,往往使用到内存的场景,其中的信息都是有可能长期存储的,起码并不会即刻过期。那么将这些信息的 embedding
能够长期存储起来,也是比较划算的事情。毕竟每一次做 embedding的转化也是需要调接口,需要花钱的。
Semantic Kernel库中包含了SQLite、Qdrant和CosmosDB的实现,自行扩展的话,也只需要实现 IMemoryStore
这个接口就可以了。
至于未来,可能就是专用的 Vector Database
了。