前几天面试某大厂的云原生岗位,原本是一个轻松+愉快的过程,当问到第二个问题,我就发现事情的不对劲,先复盘一下面试官有关Channel的问题,然后再逐一解决,最后进行扩展,这次一定要一次性通关channel!答应我,看完这篇文章,不要再被Channel吊打了!
介绍一下Channel
Channel在go中起什么作用
Channel为什么需要两个队列实现
Go为什么要开发Channel,而别的语言为什么没有
Channel底层是使用锁控制并发的,为什么不直接使用锁
Channel的底层原理和数据结构
Channel的读写流程
Channel为什么能做到线程安全
操作Channel可能出现的情况
Channel有哪些常见的使用场景
Channel的读写操作是否是原子性的,如何实现
如何避免在Channel中出现死锁的情况
Channel可以在多个goroutine之间传递什么类型的数据
如何在Channel中使用缓存区
在使用Channel时,如何保证数据的同步性和一致性
如何保证Channel的安全性
Channel的大小是否对性能有影响
Channel的内存模型是什么
如何在Channel中传递复杂的数据类型
Channel和goroutine之间的关系是什么
在Go语言中,Channel和锁的使用场景有哪些区别
Channel是Go语言中的一种并发原语,用于在goroutine之间传递数据和同步执行。Channel实际上是一种特殊类型的数据结构,可以将其想象成一个管道,通过它可以发送和接收数据,实现goroutine之间的通信和同步。
Channel的特点包括:
Channel的使用方式包括:
在 Go 中,channel
是一种用于在 goroutine 之间传递数据的并发原语。channel
可以让 goroutine 在发送和接收操作之间同步,从而避免了竞态条件,从而更加安全地共享内存。
channel
类似于一个队列,数据可以从一个 goroutine 中发送到 channel
,然后从另一个 goroutine 中接收。channel
可以是有缓冲的,这意味着可以在 channel
中存储一定数量的值,而不仅仅是一个。如果 channel
是无缓冲的,则发送和接收操作将会同步阻塞,直到有 goroutine 准备好接收或发送数据。
注:我这里提到了Channel底层用到了两个队列实现。所以就有了下面的问题
一个Channel可以被看作是一个通信通道,用于在不同的进程之间传递数据。在具体的实现中,一个Channel通常需要使用两个队列来实现。这两个队列是发送队列和接收队列。
发送队列是用来存储将要发送的数据的队列。当一个进程想要通过Channel发送数据时,它会将数据添加到发送队列中。发送队列中的数据会按照先进先出的顺序被逐个发送到接收进程。如果发送队列已经满了,那么发送进程就需要等待,直到有足够的空间可以存储数据。
接收队列是用来存储接收进程已经准备好接收的数据的队列。当一个进程从Channel中接收数据时,它会从接收队列中取出数据。如果接收队列是空的,那么接收进程就需要等待,直到有新的数据可以接收。
使用两个队列实现Channel的主要原因是为了实现异步通信。发送进程可以在发送数据之后立即继续执行其他任务,而不需要等待接收进程确认收到数据。同样,接收进程也可以在等待数据到达的同时执行其他任务。这种异步通信的实现方式可以提高系统的吞吐量和响应速度。
在Go语言中,Channel是一种非常重要的并发原语。Go语言将Channel作为语言内置的原语,可能是出于以下几个方面的考虑:
虽然其他编程语言中没有像Go语言中的Channel这样的内置并发原语,但是许多编程语言提供了类似于Channel的实现,比如Java的ConcurrentLinkedQueue、Python的Queue、C++的std::queue等。这些实现虽然没有Go语言中的Channel那么简单易用和高效,但也能够满足多线程编程中的数据传输和同步需求。
注:我这里提到了Channel底层是使用锁实现。所以就有了下面的问题
虽然在Go语言中,Channel底层实现是使用锁控制并发的,但是Channel和锁的使用场景是不同的,具有不同的优势和适用性。
首先,Channel比锁更加高级和抽象。Channel可以实现多个goroutine之间的同步和数据传递,不需要程序员显式地使用锁来进行线程间的协调。Channel可以避免常见的同步问题,比如死锁、饥饿等问题。
其次,Channel在语言层面提供了一种更高效的并发模型。在使用锁进行并发控制时,需要程序员自己手动管理锁的获取和释放,这增加了代码复杂度和错误的风险。而使用Channel时,可以通过goroutine的调度和Channel的阻塞机制来实现更加高效和简单的并发控制。
此外,Channel还可以避免一些由锁导致的性能问题,如锁竞争、锁粒度过大或过小等问题。Channel提供了一种更加精细的控制机制,能够更好地平衡不同goroutine之间的并发性能。
总的来说,虽然Channel底层是使用锁控制并发的,但是Channel在语言层面提供了更加高级、抽象和高效的并发模型,可以使程序员更加方便和安全地进行并发编程。
在Go语言中,Channel是通过一个有缓存的队列来实现的,底层数据结构是一个双向链表。是一个叫做hchan的结构体,每个Channel都有一个send队列和一个receive队列,用于存放发送和接收操作的goroutine。当发送操作和接收操作发生时,它们会被添加到对应的队列中,等待对方的操作来满足条件。
type hchan struct {
//channel分为无缓冲和有缓冲两种。
//对于有缓冲的channel存储数据,借助的是如下循环数组的结构
qcount uint // 循环数组中的元素数量
dataqsiz uint // 循环数组的长度
buf unsafe.Pointer // 指向底层循环数组的指针
elemsize uint16 //能够收发元素的大小
closed uint32 //channel是否关闭的标志
elemtype *_type //channel中的元素类型
//有缓冲channel内的缓冲数组会被作为一个“环型”来使用。
//当下标超过数组容量后会回到第一个位置,所以需要有两个字段记录当前读和写的下标位置
sendx uint // 下一次发送数据的下标位置
recvx uint // 下一次读取数据的下标位置
//当循环数组中没有数据时,收到了接收请求,那么接收数据的变量地址将会写入读等待队列
//当循环数组中数据已满时,收到了发送请求,那么发送数据的变量地址将写入写等待队列
recvq waitq // 读等待队列
sendq waitq // 写等待队列
lock mutex //互斥锁,保证读写channel时不存在并发竞争问题
}
对于有缓存的Channel,缓存区的大小即为队列的长度,当缓存区已满时,发送操作会被阻塞,直到有接收操作来取走数据;当缓存区为空时,接收操作会被阻塞,直到有发送操作来填充数据。
Channel底层的同步机制是基于等待队列和信号量实现的。每个Channel都维护着一个等待队列,其中包含了所有等待操作的goroutine;同时还维护着一个计数器,用于记录当前缓存区中的元素数量。当发送操作需要等待时,会将当前goroutine添加到等待队列中,并使计数器减一;当接收操作需要等待时,会将当前goroutine添加到等待队列中,并使计数器加一。当有其他操作满足条件时,会从等待队列中取出相应的goroutine,并将其重新加入到可执行队列中,等待调度器的调度。
向 channel 写数据:
若等待接收队列 recvq 不为空,则缓冲区中无数据或无缓冲区,将直接从 recvq 取出 G ,并把数据写入,最后把该 G 唤醒,结束发送过程。
若缓冲区中有空余位置,则将数据写入缓冲区,结束发送过程。
若缓冲区中没有空余位置,则将发送数据写入 G,将当前 G 加入 sendq ,进入睡眠,等待被读 goroutine 唤醒。
从 channel 读数据
若等待发送队列 sendq 不为空,且没有缓冲区,直接从 sendq 中取出 G ,把 G 中数据读出,最后把 G 唤醒,结束读取过程。
如果等待发送队列 sendq 不为空,说明缓冲区已满,从缓冲区中首部读出数据,把 G 中数据写入缓冲区尾部,把 G 唤醒,结束读取过程。
如果缓冲区中有数据,则从缓冲区取出数据,结束读取过程。
将当前 goroutine 加入 recvq ,进入睡眠,等待被写 goroutine 唤醒。
关闭 channel
1.关闭 channel 时会将 recvq 中的 G 全部唤醒,本该写入 G 的数据位置为 nil。将 sendq 中的 G 全部唤醒,但是这些 G 会 panic。
panic 出现的场景还有:
Channel的线程安全主要是通过其内部的同步机制实现的。
Channel 可以理解是一个先进先出的队列,通过管道进行通信,发送一个数据到Channel和从Channel接收一个数据都是原子性的。不要通过共享内存来通信,而是通过通信来共享内存,前者就是传统的加锁,后者就是Channel。设计Channel的主要目的就是在多任务间传递数据的,本身就是安全的。
当多个goroutine通过Channel进行通信时,Channel会保证每个操作的原子性和顺序性,避免了多个goroutine同时访问共享变量导致的数据竞争问题。Channel的阻塞特性也保证了在发送和接收操作发生时,它们会被添加到等待队列中,直到满足条件后才会被唤醒,从而避免了死锁问题。
channel存在3种状态:
操作 | 一个零值nil通道 | 一个非零值但已关闭的通道 | 一个非零值且尚未关闭的通道 |
---|---|---|---|
关闭 | 产生恐慌 | 产生恐慌 | 成功关闭 |
发送数据 | 永久阻塞 | 产生恐慌 | 阻塞或者成功发送 |
接收数据 | 永久阻塞 | 永不阻塞 | 阻塞或者成功接收 |
Channel的读写操作是原子性的,并且是由Go语言内部的同步机制来保证的。
当一个goroutine进行Channel的读写操作时,Go语言内部会自动进行同步,保证该操作的原子性和顺序性。这种同步机制主要涉及到两个部分:
通过这种基于锁和等待的同步机制,Go语言保证了Channel的读写操作是原子性的,可以在多个goroutine之间安全地进行通信和同步。
在Go语言中,Channel可以在多个goroutine之间传递任何类型的数据,包括基本数据类型、复合数据类型、结构体、自定义类型等。这些数据类型在传递过程中都会被封装成对应的指针类型,并由Channel进行传递。
在Go语言中,我们可以使用带缓冲的Channel来实现Channel的缓存区功能。带缓冲的Channel可以存储一定数量的元素,而不必立即将它们交给接收方。这样可以减少发送和接收操作之间的同步,从而提高程序的性能。
使用带缓冲的Channel,可以通过在Channel声明时指定缓冲区的大小来实现。例如,声明一个容量为10的缓冲Channel可以使用以下语句:
ch := make(chan int, 10)
在这个例子中,我们创建了一个整型缓冲Channel,其容量为10。这意味着在Channel中可以存储10个整型元素,而不必立即将它们发送到接收方。当Channel中的元素数量达到缓冲区容量时,再进行写入操作时,写入操作就会被阻塞,直到有接收方读取了Channel中的元素。
在使用Channel时,为了保证数据的同步性和一致性,可以采用以下几种方式:
Channel的大小对性能会产生一定的影响。Channel的大小是指Channel可以容纳的元素数量,可以通过在创建Channel时指定容量大小来控制。当Channel的容量较小时,可能会导致发送和接收操作的阻塞,从而影响程序的性能。而当Channel的容量较大时,可能会增加系统的内存开销,也可能会导致Channel中的元素被占用的时间较长,从而影响程序的响应性。
在Go语言中,Channel的内存模型是基于通信顺序进程(Communicating Sequential Processes,CSP)模型的。CSP模型是一种并发计算模型,它将并发程序看作是一组顺序进程,这些进程通过Channel进行通信和同步。
在CSP模型中,每个进程都是独立的,它们之间通过Channel进行通信。Channel是一个具有FIFO特性的数据结构,用于在多个进程之间传递数据。当一个进程向Channel发送数据时,它会阻塞等待,直到另一个进程从Channel中接收到数据。同样地,当一个进程从Channel中接收数据时,它也会阻塞等待,直到另一个进程向Channel发送数据。
在Go语言中,Channel的内存模型采用了CSP模型的概念,即每个Channel都是一个独立的顺序进程。当一个进程向Channel发送数据时,数据会被复制到Channel的缓冲区或者直接发送到接收方。当一个进程从Channel中接收数据时,数据会被从Channel的缓冲区中取出或者等待发送方发送数据。
在Go语言中,Channel可以传递任何类型的数据,包括复杂的数据类型。如果要在Channel中传递复杂的数据类型,可以将其定义为一个结构体,然后通过Channel进行传递。
例如,假设我们有一个结构体类型Person,它包含姓名和年龄两个字段:
type Person struct {
Name string
Age int
}
我们可以定义一个Channel,用于传递Person类型的数据:
ch := make(chan Person)
现在我们可以在不同的Goroutine中向Channel发送和接收Person类型的数据:
// 发送Person类型数据到Channel
go func() {
p := Person{Name: "Alice", Age: 18}
ch <- p
}()
// 从Channel接收Person类型数据
p := <-ch
fmt.Println(p.Name, p.Age)
注意,如果要在Channel中传递复杂的数据类型,需要确保该类型是可导出的。
在Go语言中,Channel和Goroutine是密切相关的,它们可以说是Go语言并发编程的两个重要组件。
Goroutine是Go语言中轻量级的线程实现,可以在一个进程中创建成千上万个Goroutine,并且它们的创建和销毁的代价非常小,因此非常适合在高并发的场景下使用。Goroutine的调度是由Go运行时系统(runtime)负责的,它采用协作式调度,可以自动地在多个线程之间切换,以达到高效利用CPU的目的。
Channel是Goroutine之间通信的一种方式,它可以用于在不同的Goroutine之间传递数据。Channel提供了两个基本操作:发送和接收。通过向Channel发送数据,一个Goroutine可以将数据传递给另一个Goroutine;通过从Channel接收数据,一个Goroutine可以获取其他Goroutine传递过来的数据。
因此,可以说Channel和Goroutine之间是一种协作关系:Goroutine可以通过Channel与其他Goroutine进行通信,以实现协作和共享数据,从而完成复杂的并发任务。同时,Channel的实现也依赖于Goroutine和Go运行时系统,它们共同构成了Go语言并发编程的基础。
在Go语言中,Channel和锁(sync.Mutex等)都可以用于并发编程中的同步和共享数据,但它们的使用场景有一些区别。
Channel通常用于Goroutine之间传递数据,并发的Goroutine之间可以通过Channel进行同步。使用Channel可以避免锁的问题,例如死锁、饥饿等问题。Channel可以将数据在多个Goroutine之间进行传递和共享,而且在数据传递的过程中,不需要使用锁来保证数据的安全性,这也是Channel比锁更加安全和高效的原因之一。因此,当需要在不同的Goroutine之间传递数据时,使用Channel是比较合适的选择。
锁通常用于对共享资源进行保护,防止多个Goroutine同时访问和修改同一个共享资源,从而导致数据的竞争和不一致。使用锁可以保证同一时刻只有一个Goroutine能够访问和修改共享资源,从而保证数据的安全性和一致性。当需要对共享资源进行保护时,使用锁是比较合适的选择。
Channel和锁都是Go语言中常用的并发编程工具,它们各自有不同的使用场景。在实际开发中,应根据具体的需求选择合适的并发编程工具来实现同步和共享数据。
通过这场面试,感觉大厂比较考验发散性思维,为什么这样做,这样做有什么用,会得到什么好处,跟其他相比有什么优势,这确实是我之前所不具备的,思考问题一定要深入原理,多思考背后的问题,这样才能快速成长起来。
希望能够坚持到这里朋友们,以后再遇到Channel的问题,不会再被难住,加油!如果友友们觉得写的还可以,记得一键三连哦!
未来不是预测,而是创造。只要我们努力、积极地行动,未来就充满着无限的可能