VRLL=220; VR = VRLL/sqrt(3);
Z = (0.15+j*2*pi*60*1.3263e-3)*40;
disp('(a)')
SR=304.8+j*228.6;
IR = conj(SR)/(3*conj(VR)); IS = IR;
VS = VR + Z*IR;
VSLL = sqrt(3)*abs(VS)
SS = 3*VS*conj(IS)
REG = (VSLL - VRLL)/VRLL*100
Eff = real(SR)/real(SS)*100
disp('(b)')
SR=304.8-j*228.6;
IR = conj(SR)/(3*conj(VR)); IS = IR;
VS = VR + Z*IR;
VSLL = sqrt(3)*abs(VS)
SS = 3*VS*conj(IS)
REG = (VSLL - VRLL)/VRLL*100
Eff = real(SR)/real(SS)*100
运行结果
(a)
VSLL =
250.0186
SS =
3.2280e+02 + 2.8858e+02i
REG =
13.6448
Eff =
94.4252
(b)
VSLL =
210.2884
SS =
3.2280e+02 - 1.6862e+02i
REG =
-4.4144
Eff =
94.4252
r = 0.036; g = 0; f = 60;
L = 0.8; % 毫亨
C = 0.0112; % 微法
Length = 130; VR3ph = 325;
VR = VR3ph/sqrt(3) + j*0; % kV (末端相电压)
[Z, Y, ABCD] = rlc2abcd(r, L, C, g, f, Length)
AR = acos(0.8);
SR = 270*(cos(AR) + j*sin(AR)); % MVA (末端功率)
IR = conj(SR)/(3*conj(VR)); % kA (末端电流)
VsIs = ABCD* [VR; IR]; %列向量 [Vs; Is]
Vs = VsIs(1);
Vs3ph = sqrt(3)*abs(Vs); % kV(始端线电压)
Is = VsIs(2); Ism = 1000*abs(Is); %A (始端电流)
pfs= cos(angle(Vs)- angle(Is)); % (始端功率因数)
Ss = 3*Vs*conj(Is); %MVA (始端功率)
REG = (Vs3ph/abs(ABCD(1,1)) - VR3ph)/VR3ph *100;
%空载时 IR 0 ,由式(5.10) VR NL ( ) VS 和式(5.9)可得 A
fprintf(' Is = %g A', Ism), fprintf(' pf = %g\n', pfs)
fprintf(' Vs = %g L-L kV\n', Vs3ph)
fprintf(' Ps = %g MW', real(Ss)),
fprintf(' Qs = %g Mvar\n', imag(Ss))
fprintf(' Percent voltage Reg. = %g\n', REG)
运行结果
Enter 1 for Medium line or 2 for long line --> 1
Nominal pi model
----------------
Z = 4.68 + j 39.2071 ohms
Y = 0 + j 0.000548899 Siemens
0.98924 + j 0.0012844 4.68 + j 39.207
ABCD =
-3.5251e-07 + j 0.00054595 0.98924 + j 0.0012844
Z =
4.6800 +39.2071i
Y =
0.0000e+00 + 5.4890e-04i
ABCD =
0.9892 + 0.0013i 4.6800 +39.2071i
-0.0000 + 0.0005i 0.9892 + 0.0013i
Is = 421.132 A pf = 0.869657
Vs = 345.002 L-L kV
Ps = 218.851 MW Qs = 124.23 Mvar
Percent voltage Reg. = 7.30913
z = 0.036 + j* 0.3; y = j*4.22/1000000; Length = 130;
Vs3ph = 345; Ism = 0.4; %KA;
As = -acos(0.95);
Vs = Vs3ph/sqrt(3) + j*0; % kV (始端相电压)
Is = Ism*(cos(As) + j*sin(As));
[Z,Y, ABCD] = zy2abcd(z, y, Length)
VrIr = inv(ABCD)* [Vs; Is]; %列向量 [Vr; Ir]
Vr = VrIr(1);
Vr3ph = sqrt(3)*abs(Vr); % kV(末端线电压)
Ir = VrIr(2); Irm = 1000*abs(Ir); % A (末端电流)
pfr= cos(angle(Vr)- angle(Ir)); % (末端功率因数)
Sr = 3*Vr*conj(Ir); % MVA (末端功率)
REG = (Vs3ph/abs(ABCD(1,1)) - Vr3ph)/Vr3ph *100;
fprintf(' Ir = %g A', Irm), fprintf(' pf = %g\n', pfr)
fprintf(' Vr = %g L-L kV\n', Vr3ph)
fprintf(' Pr = %g MW', real(Sr))
fprintf(' Qr = %g Mvar\n', imag(Sr))
fprintf(' Percent voltage Reg. = %g\n', REG)
运行结果
Enter 1 for Medium line or 2 for long line --> 1
Nominal pi model
----------------
Z = 4.68 + j 39 ohms
Y = 0 + j 0.0005486 Siemens
0.9893 + j 0.0012837 4.68 + j 39
ABCD =
-3.5213e-07 + j 0.00054567 0.9893 + j 0.0012837
Z =
4.6800 +39.0000i
Y =
0.0000e+00 + 5.4860e-04i
ABCD =
0.9893 + 0.0013i 4.6800 +39.0000i
-0.0000 + 0.0005i 0.9893 + 0.0013i
Ir = 441.832 A pf = 0.887501
Vr = 330.68 L-L kV
Pr = 224.592 MW Qr = 116.612 Mvar
Percent voltage Reg. = 5.45863
z = 0.045 + j*.4; y = j*4.0/1000000; Length = 250;
gamma = sqrt(z*y); Zc = sqrt(z/y);
A = cosh(gamma*Length); B = Zc*sinh(gamma*Length);
C = 1/Zc * sinh(gamma*Length); D = A;
ABCD = [A B; C D]
Z = Zc * sinh(gamma*Length)
Y = 2/Zc * tanh(gamma*Length/2)
运行结果
ABCD =
0.9504 + 0.0055i 10.8778 +98.3624i
-0.0000 + 0.0010i 0.9504 + 0.0055i
Z =
10.8778 +98.3624i
Y =
0.0000 + 0.0010i
L=0.97; C=0.0115; lngth=300; SR=800+j*600; VRLL = 500;
w=2*pi*60;
beta=w*sqrt(L*C*1e-9)
Zc = sqrt(L/C*1e3)
vel=1/sqrt(L*C*1e-9)
lambda=vel/60
betal=beta*lngth;
VR=VRLL/sqrt(3);
IR=conj(SR)/(3*conj(VR));
VS=cos(betal)*VR+j*Zc*sin(betal)*IR;
VSLL=sqrt(3)*abs(VS)
IS = j/Zc*sin(betal)*VR+cos(betal)*IR;
ISM=abs(IS)*1000
SS=3*VS*conj(IS)
A=abs(cos(betal));
REG=(VSLL/A - VRLL)/VRLL*100
VS=1.0; VR=0.9; lambda=5000; Zc=320; delta=36.87*pi/180; P=700; lngth=315;
betal=2*pi/lambda*lngth
SIL=P*sin(betal)/(VS*VR*sin(delta))
KVL = sqrt(Zc*SIL)
disp('(b)')
Xd=Zc*sin(betal)
Pmax=KVL*0.9*KVL/Xd
Zc=290.43; betal=0.3777;
VSLL=500;
VS=500/sqrt(3);
disp('(a)')
VRnl = VS/cos(betal);
VRnlLL=sqrt(3)*VRnl
disp('(b)')
XLsh=sin(betal)/(1-cos(betal))*Zc
QXL = VSLL^2/XLsh
PR=800; QR=600; SR=PR+j*QR; VRLL=500;
Zc=290.43; betal=0.3777;
disp('(a)')
Xd=Zc*sin(betal);
delta=asin((PR*Xd)/(VRLL^2))
QR2=VRLL^2/Xd*cos(delta)-VRLL^2/Xd*cos(betal)
Sc=j*QR2-j*QR
Xc=VRLL^2/conj(Sc)
C=1/(2*pi*60*abs(Xc))
disp('(b)')
Xser = .4*Xd;
Zd = j*(Xd-Xser); B = Zd
Yd = j*2/Zc*tan(betal/2); A = 1+Zd*Yd/2
VR = VRLL/sqrt(3);
IR = conj(SR)/(3*VR)
VS = A*VR + B*IR
VSLL = sqrt(3)*abs(VS)
Reg = (VSLL/abs(A) - VRLL)/VRLL*100
lineperf
%运行结果
TRANSMISSION LINE MODEL
Type of parameters for input Select
Parameters per unit length
r(ohms), g(siemens) L(mH) & C (micro F) 1
Complex z and y per unit length
r+j*x (ohms/length), g+j*b (siemens/length) 2
Nominal pi or Eq. pi model 3
A, B, C, D constants 4
Conductor configuration and dimension 5
To quit 0
Select number of menu --> 1
Enter Line length = 300
Enter Frequency in Hz = 60
Enter line resistance/phase in ohms per unit length r = 0
Enter line inductance/phase in millihenry per unit length L = 0.97
Enter line capacitance/phase in micro F per unit length C = 0.0115
Enter line conductance/phase in siemens per unit length g = 0
Enter 1 for Medium line or 2 for long line --> 2
Equivalent pi model
-------------------
Z' = 0 + j 107.114 ohms
Y' = 0 + j 0.00131631 siemens
Zc = 290.427 + j 0 ohms
alpha l = 0 neper beta l = 0.377735 radian = 21.6426 鳿 n
0.9295 + j 0 0 + j 107.11
ABCD =
0 + j 0.0012699 0.9295 + j 0
Hit return to continue
TRANSMISSION LINE PERFORMANCE
----------Analysis---------- Select
To calculate sending end quantities
for specified receiving end MW, Mvar 1
To calculate receiving end quantities
for specified sending end MW, Mvar 2
To calculate sending end quantities
when load impedance is specified 3
Open-end line & inductive compensation 4
Short-circuited line 5
Capacitive compensation 6
Receiving end circle diagram 7
Loadability curve and voltage profile 8
To quit 0
Select number of menu --> 6
CAPACITIVE COMPENSATION
Analysis Select
-------- ------
Shunt capacitive compensation 1
Series capacitive compensation 2
Series & Shunt capacitive compensation 3
To quit 0
Select number of menu --> 1
Enter sending end line-line voltage kV = 500
Enter desired receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle?(for Ref. enter 0 ) = 0
Enter receiving end 3-phase real power MW = 800
Enter receiving end 3-phase reactive power(+ for lagging & - for leading power factor) Mvar =
600
Shunt capacitive compensation
-----------------------------
Vs = 500 kV (L-L) at 20.0454?
Vr = 500 kV (L-L) at 0?
Pload = 800 MW Qload = 600 Mvar
Load current = 1154.7 A at -36.8699? PFl = 0.8 lagging
Required shunt capcitor: 433.388 ohm, 6.12057 micro F, 576.85 Mvar
Shunt capacitor current = 666.089 A at 90?
Pr = 800.000 MW Qr = 23.150 Mvar
Ir = 924.147 A at -1.65752? PFr = 0.999582 lagging
Is = 924.147 A at 21.703? PFs = 0.999582 leading
Ps = 800.000 MW Qs = -23.150 Mvar
PL = 0.000 MW QL = -46.300 Mvar
Percent Voltage Regulation = 7.58444
Transmission line efficiency = 100