- 本文为365天深度学习训练营 中的学习记录博客
- 参考文章:365天深度学习训练营-第P2周:彩色识别
- 原作者:K同学啊 | 接辅导、项目定制
- 文章来源:K同学的学习圈子
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
from torchinfo import summary # 方便像tensorflow一样打印模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_dataset = datasets.CIFAR10(root='data', train=True,
download=True, transform=transforms.ToTensor()) # 不要忘记这个transform
test_dataset = datasets.CIFAR10(root='data', train=False,
download=True, transform=transforms.ToTensor())
image, label = train_dataset[0]
print(image.shape)
plt.figure(figsize=(20,4))
for i in range(20):
image, label = train_dataset[i]
plt.subplot(2, 10, i+1)
plt.imshow(image.numpy().transpose(1,2,0)
plt.axis('off')
plt.title(label) # 加载的数据集没有对应的名称,暂时展示它们的id
batch_size = 32
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
class Model(nn.Module):
def __init__(self, num_classes):
super().__init__()
# 3x3的卷积无padding每次宽高-2
# 2x2的最大池化,每次宽高缩短为原来的一半
# 32x32 -> conv1 -> 30x30 -> maxpool -> 15x15
self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
# 15x15 -> conv2 -> 13x13 -> maxpool -> 6x6
self.conv2 = nn.Conv2d(64, 64, kernel_size=3)
# 6x6 -> conv3 -> 4x4 -> maxpool -> 2x2
self.conv3 = nn.Conv2d(64, 128, kernel_size=3)
self.maxpool = nn.MaxPool2d(2),
self.flatten = nn.Flatten(),
self.fc1 = nn.Linear(2*2*128, 256)
self.fc2 = nn.Linear(256, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.maxpool(x)
x = F.relu(self.conv2(x))
x = self.maxpool(x)
x = F.relu(self.conv3(x))
x = self.maxpool(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model(10).to(device)
summary(model, input_size=(1, 3, 32, 32))
learning_rate = 1e-2
epochs = 10
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
def train(train_loader, model, loss_fn, optimizer):
size = len(train_loader.dataset)
num_batches = len(train_loader)
train_loss, train_acc = 0, 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
preds = model(x)
loss = loss_fn(preds, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_acc += (preds.argmax(1) == y).type(torch.float).sum().item()
train_loss /= num_batches
train_acc /= size
return train_loss, train_acc
def test(test_loader, model, loss_fn):
size = len(test_loader.dataset)
num_batches = len(test_loader)
test_loss, test_acc = 0, 0
with torch.no_grad():
for x, y in test_loader:
x, y = x.to(device), y.to(device)
preds = model(x)
loss = loss_fn(preds, y)
test_loss += loss.item()
test_acc += (preds.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
test_acc /= size
return test_loss, test_acc
def fit(train_loader, test_loader, model, loss_fn, optimizer, epochs):
train_loss, train_acc = [], []
test_loss, test_acc = [], []
for epoch in range(epochs):
model.train()
epoch_train_loss, epoch_train_acc = train(train_loader, model, loss_fn, optimizer)
model.eval()
epoch_test_loss, epoch_test_acc = test(test_loader, model, loss_fn)
train_loss.append(epoch_train_loss)
train_acc.append(epoch_train_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
return train_loss, train_acc, test_loss, test_acc
train_loss, train_acc, test_loss, test_acc =
fit(train_loader, test_loader, model, loss_fn, optimizer, 20)
series = range(len(train_loss))
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.plot(series, train_loss, label='train loss')
plt.plot(series, test_loss, label='validation loss')
plt.legend(loc='upper right')
plt.title('Loss')
plt.subplot(1,2,2)
plt.plot(series, train_acc, label='train accuracy')
plt.plot(series, test_acc, label='validation accuracy')
plt.legend(loc='lower right')
plt.title('Accuracy')
从结果图可以发现,模型应该还没收敛,将epoch设置为30,重新跑一遍模型。
可以看出20个epoch后,训练集上的正确率持续增长,在验证集上的正确率几乎就不再增长了,符合过拟合的特征。需要对模型进行改进才能提升正确率了。
通过本周的学习,掌握了使用pytorch编写一个完整深度学习的过程,包括环境的配置、数据的准备、模型定义与训练、结果分析呈现等步骤,并且掌握了通过pytorch的API组建一个简单的卷积神经网络的过程。