- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 我的第一个开源项目:用Python搭建轻量级静态网页服务器—— 零基础也能实现的Web开发初体验
一、为什么选择静态服务器?极简高效:无需数据库或复杂后端逻辑,适合展示简历、作品集等静态内容学习曲线平缓:是理解HTTP协议和Web服务原理的最佳入门方式资源消耗低:单文件Python脚本即可运行,内存占用小于10MB二、完整开发流程(含代码逐行解析)第一步:创建项目结构PWS/#项目根目录├──static/#静态资源文件夹│├──index.html#主页│├──style.css#样式表│└
- 1、 快速上手 [代码级手把手解析diffusers库]
Yuezero_
AIGC人工智能深度学习
快速上手Pipeline内部执行步骤后续更新计划diffusers是HuggingFace推出的一个diffusion库,它提供了简单方便的diffusion推理训练pipe,同时拥有一个模型和数据社区,代码可以像torchhub一样直接从指定的仓库去调用别人上传的数据集和pretraincheckpoint。除此之外,安装方便,代码结构清晰,注释齐全,二次开发会十分有效率。diffusers使用
- container_memory_working_set_bytes` 与 `container_memory_usage_bytes` 的区别
强哥之神
prometheus容器dockerk8s
在Prometheus中,container_memory_working_set_bytes与container_memory_usage_bytes的区别如下:计算方式及包含内容:container_memory_usage_bytes:表示容器当前使用的总内存,包括所有内存,不管这些内存是否最近被访问过,也不管其是否可以被操作系统回收,即它包含了缓存、工作集等所有内存部分。container
- 鲲鹏服务器的ARM架构
hid_clf-2oizpt7skaq
arm开发架构
ARM架构过去称作进阶精简指令集机器(AdvancedRISCMachine,更早称作:AcornRISCMachine),是一个32位精简指令集(RISC)处理器架构,其广泛地使用在许多嵌入式系统设计。由于节能的特点,ARM处理器非常适用于移动通讯领域,符合其主要设计目标为低耗电的特性。在今日,ARM家族占了所有32位嵌入式处理器75%的比例,使它成为占全世界最多数的32位架构之一。ARM处理器
- CentOS企业级文件服务器终极部署指南
方案对比与选择指南(企业级评估)技术方案详细对比表方案协议版本典型应用场景核心优势主要局限性NFSNFSv3/NFSv4.2高性能计算(HPC)、容器持久化存储、AI训练数据集共享内核级支持、RDMA协议支持、10μs级延迟、支持pNFS并行传输默认无加密、ACL管理复杂、Windows需额外客户端SambaSMB3.1.1企业办公协作、Hyper-V虚拟机存储、MicrosoftSQLServe
- 多模态实操第一弹:多模态AI是什么?能做什么?
江凯吴杰
多模态的尝试人工智能
多模态AI专栏第一期:多模态人工智能概述与应用你是否想过,AI如何像人一样同时"看、听、说"?本期专栏将带你深入了解多模态AI的核心原理、发展脉络、关键技术、典型应用,并为后续实战打下坚实基础。最后,我们将详细介绍本系列所用的ERIT数据集及其任务背景。目录1.什么是多模态AI?2.多模态AI的发展历程3.多模态AI的核心技术4.多模态AI的应用场景5.多模态AI的挑战与机遇6.专栏预告与ERIT
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- C中Mysql的基本api接口
薄荷冰ovo
Mysqlc++
一、初始化参数返回值二、链接服务器三、执行SQL语句注意事项四、获取结果集4.1mysql_affected_rows和mysql_num_rows4.2mysql_store_result与mysql_free_result注意事项注意事项整体的工作流程4.3mysql_use_result()4.4mysql_field_count()五、关闭MySQL使用和区别六、错误处理mysql_err
- MySQL:CRUD操作
Monly21
MySQLmysqljavascriptandroid
目录XML模版一、结果返回集二、查询三、查询详情四、新增4.1不含逗号4.1含逗号五、修改5.1不含逗号5.2含逗号六、删除XML模版```xml一、结果返回集二、查询AND(dept.dept_id=#{dh}ORFIND_IN_SET(#{dh},dept.ancestors))-->ANDxxx=#{xxx}-->ANDxxxlikeconcat('%',#{xxx},'%')-->ANDx
- Mysql—C语言API接口
Mysql—C语言API接口一、mysql-arp访问数据的操作流程1.初始化mysql操作句柄;2.连接mysql服务器;3.设置mysql客户端字符集(保持与服务器一致);4.选择要操作的数据库;5.定义sql语句,并且执行语句;6.将查询结果保存到本地;7.获取结果中的条数和列数;8.根据条数和列数遍历结果集;9.释放保存在本地的结果集;10.关闭mysql句柄,释放资源;二、接口认识1.初
- 【知识图谱构建系列1】数据集介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱
文章目录项目简介数据集简介数据集核心内容应用与影响小细节参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/项目简介我们所要学习的项目(LLM4KGC)聚焦于利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KnowledgeGraph,T2KG)的自动化构建,旨在探索高效可靠的知识
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- docker 搭建mysql 连接不上_docker搭建MySQL主从集群
Grayce
docker搭建mysql连接不上
关于MySQL主从模式,如果我们直接在本机上搭建的话,是没法搭建的,只能借助于虚拟机,但有的时候我们又需要搭建一个主从集群,以便于进行一些功能性的测试。这个时候我们就可以尝试使用docker,借助于docker的容器化技术,我们只需要创建两个MySQL容器,并且占用主机的两个端口即可,对主机没有其他额外的影响。这种方式非常的轻量,而且也容易复制。本文则主要讲解如何通过docker来搭建MySQL集
- KAIST数据集及使用
草莓奶忻
SLAM基础#SLAM数据集ubuntu
文章目录KAIST复杂城市数据集KAIST数据集转换为rosbag1.将.gz.tar文件解压到其文件夹中2.克隆并构建此存储库3.使用路径和所需主题编辑配置文件4.为每种传感器类型创建一个rosbag文件5.将所有bag合并为一个参考KAIST复杂城市数据集KAIST-Urban-数据集-论文阅读数据集下载:ComplexUrbanDataset复杂城市数据集KAIST数据集转换为rosbag1
- 揭秘 IAM Identity Center 的两种模式:为什么我的控制台没有“权限集”?
运维开发王义杰
aws信息安全系统运维aws运维
大家好,今天我们来破解一个IAMIdentityCenter的“谜题”:为什么有时候登录进去,控制台功能齐全,有用户、组、AWS账户、权限集等所有选项;而有时候,却像下面这位朋友遇到的情况一样,只有用户、组和应用,关键的“权限集”和“AWS账户分配”功能消失了?答案是,我们可能正在体验IAMIdentityCenter的两种不同“工作模式”之一。这并非Bug,而是一种特性的体现,其根源在于它的预置
- Linux信号保存与处理机制详解
什么半岛铁盒
linux
Linux信号的保存与处理涉及多个关键机制,以下是详细的总结:1.信号的保存进程描述符(task_struct):每个进程的PCB中包含信号相关信息。pending信号集:记录已到达但未处理的信号(未决信号)。每个信号对应一个位,置1表示信号待处理。blocked信号屏蔽字:标识被阻塞(屏蔽)的信号。被屏蔽的信号将暂不递送,直到解除屏蔽。实时信号队列:实时信号(SIGRTMIN~SIGRTMAX)
- Python的GUI库选择指南(深度拓展)
前文我们分析了python的GUI库,有很多,面向应用场景也不尽相同,如何在使用过程中,选择合适的GUI库呢?可以查看:python有哪些常用的GUI(图形用户界面)库及选择指南-CSDN博客初学者推荐:Tkinter或PySimpleGUI,简单易学,文档丰富。复杂应用:PyQt5或WxPython,提供完整的功能集和高级组件。移动应用:Kivy或BeeWare(Toga),支持跨平台部署到iO
- 怎么java链接数据库_Java 如何使用JDBC连接数据库
悦时光里的背包客
怎么java链接数据库
一、使用JDBC连接数据库1.使用JDBC-ODBC桥驱动程序连接数据库基本步骤:(1)加载并注册数据库驱动(2)通过DriverManager获取数据库连接(3)通过Connection对象获取Statement对象(4)使用Statement接口执行SQL语句(5)操作ResultSet结果集(6)关闭连接,释放资源2.下面进行代码演示1.注册数据库驱动程序的语法格式如下:DriverMana
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- PaddleOCR不同模型和Paddle版本推理性能对比
dotNET跨平台
paddle
飞桨PaddleOCR这几年发布了从V2到V5的中英文OCR模型,Paddle推理框架也从2.X升级到3.0.0版本。本次对不同模型和推理框架的性能做些对比。测试条件:操作系统:win10X64CPU:13thGenIntel(R)Core(TM)i9-13900HF3.0GHz24核32线程CPU指令集:AVX,AVX2测试基于PaddleOCRSharp的C++版本SDK:https://gi
- Cortex-A9解码H265遇到的程序崩溃问题
melonbo
FFMPEGffmpeg
1、应用背景处理器采用Cortex-A9,从网络摄像机拉取RTSP视频流,编码格式为H265,在打开rtsp视频流时有小概率出现程序崩溃的问题。2、分析根据coredump文件显示,问题出现在hevcdsp_sao_neon.s文件,它的作用是优化HEVC视频编码器的性能,特别是在处理视频帧时,通过NEON指令集实现的并行处理能力,可以显著提高视频编码的速度。ARMNEON指令集是ARM平台上的S
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- AI测试方法
二狗子82
ai功能测试测试用例AIGC
1.创建高质量的测试数据集为了验证标签的准确性,需要构建一个丰富的测试数据集。该数据集应包括多种场景和风格的输入文本:正常对话、非正式对话、含有拼写错误或语法问题的文本等。包括模棱两可或复杂情境的文本,看看模型是否能正确分类。确保数据集中有足够的标签种类分布,这样可以测试模型是否能应对不同类别的文本内容。2.多轮对话的上下文跟踪对于涉及多轮对话或长文本的情况,模型需要正确理解整个对话的上下文。例如
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- 1.3 基于蜂鸟E203处理器的RISC-V指令扩展技术
秃了头,空悲切
蜂鸟E203处理器risc-v嵌入式硬件算法学习
一、RISC-V指令集架构RISC表示精简指令集计算机(ReducedInstructionSetComputer,RISC),RISC-V指令集架构是一种新兴的指令集架构,它源自加州大学伯克利分校。RISC-V架构具有精简、模块化以及可扩展等特点,开发人员可以通过组合或扩展不同的指令集,几乎可以构建适用于各个领域的微处理器。相比于传统的指令集架构,RISC-V架构主要具有以下特点:(1)模块化的
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- Python数据可视化-----制作全球地震散点图
从未止步..
pythonpythonjson数据结构
为了制作全球地震散点图,我在网上下载了一个数据集,其中记录了一个月内全球发生的所有地震,但这些数据是以JSON格式存储的,因此需要用json模块来进行处理。查看JSON数据:首先我们先打开下载好的数据集浏览一下:你会发现其中的数据密密麻麻,根本不是人读的,因此,接下来我们将对数据进行处理,让它变得简单易读。importjson#导入json模块,以便于加载文件中的数据filename='eq_da
- Python隐式反馈数据集库之implicit使用详解
Rocky006
python开发语言
概要Implicit是一个专注于隐式反馈数据集的协同过滤推荐系统Python库,由BenFrederickson开发。与显式反馈(如用户明确给予的评分)不同,隐式反馈是指用户通过行为间接表达偏好的数据,如点击次数、浏览时长或购买历史。这类数据在实际应用中更为普遍,但也更难以处理。传统推荐系统如Surprise或LightFM虽然功能全面,但在处理大规模稀疏矩阵时性能不佳。Implicit库通过优化
- FineWeb数据集
frostmelody
人工智能
FineWeb数据集根据您提供的文档链接,我将对FineWeb数据集进行全面解析。FineWeb是HuggingFace在2024年发布的一项革命性开源AI训练数据集,它通过提供高质量、大规模的数据,打破了AI训练数据的垄断局面。以下解析基于文档内容,分为几个核心部分:FineWeb的定义与规模、其重要性、主要突破点,以及制作过程的全貌。我会在相关部分嵌入文档中的图片,以增强理解。所有图片均来自文
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri