- HiPixel开源AI驱动的图像超分辨率的原生macOS 应用程序,使用 SwiftUI 构建并利用 Upscayl 强大的 AI 模型
2301_78755287
swiftuiiosswift人工智能开源图像处理
一、软件介绍文末提供程序和源码下载HiPixel是一个开源程序基于SwiftUI构建的macOS原生应用程序,用于AI驱动的图像超分辨率,并利用Upscayl的强大AI模型。二、软件特征具有SwiftUI界面的原生macOS应用程序使用AI模型进行高质量图像放大通过GPU加速实现快速处理支持各种图像格式用于自动处理新添加图像的文件夹监控现代、直观的用户界面三、为什么选择HiPixel?虽然Upsc
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 为什么Redis对大 Key(Large Key)和大对象不友好?怎样优化?
风一样的树懒
redis数据库缓存
你好,我是风一样的树懒,一个工作十多年的后端专家,曾就职京东、阿里等多家互联网头部企业。公众号“吴计可师”,已经更新了近百篇高质量的面试相关文章,喜欢的朋友欢迎关注点赞Redis对大Key(LargeKey)和大对象不友好,主要源于其内存管理模型、单线程架构和数据结构特性。以下从性能影响、内存管理、集群限制三个维度解析原因,并提供优化方案:一、Redis对大Key不友好的核心原因1.性能瓶颈单线程
- SQLMesh 系列教程:解锁SQLMesh的宏与变量魔法
梦想画家
#python数据分析工程sqlmesh数据工程分析工程
在数据库流水线开发中,代码复用与动态配置是提升效率的核心诉求。SQLMesh以其独特的宏系统与用户定义变量机制,重新定义了SQL生成的灵活性。与传统模板引擎不同,SQLMesh的宏并非简单的字符串替换,而是基于语义理解的智能代码重构——通过sqlglot库解析SQL结构,结合Python逻辑处理能力,让用户能够以声明式语法实现复杂查询的动态组装。引言无论是全局配置、网关级参数还是模型内局部变量,S
- Spring MVC 面试题
A逍遥人世欢
面试springmvcjava
概述什么是SpringMVC?简单介绍下你对SpringMVC的理解?SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架,通过把模型-视图-控制器分离,将web层进行职责解耦,把复杂的web应用分成逻辑清晰的几部分,简化开发,减少出错,方便组内开发人员之间的配合。SpringMVC的优点可以支持各种视图技术,而不仅仅局限于JSP;与Spring框架集成(如I
- CesiumEarth v1.10 更新,支持参数值从矢量属性中动态读取
limit0075
arcgis低代码web3chrome旅游
发布时间:2025年03月14日支持动态读取参数值如点的大小、高度、颜色,线的宽度、颜色,面的颜色、高度等等,如此点线面的表现样式可以根据属性中的字段来决定,表现形式更加多样化。矢量图层参数升级部分矢量参数可以从字段中动态获取下面是一些表达城市建筑模型的简单例子,数据源来自矢量面(而非三维模型),在面图层中绘制了几个建筑底面,以白模的形式进行渲染,高度、颜色等参数从字段中动态读取动态参数的设置方法
- 软件架构师--数据库系统
一蓑烟雨*任平生
软件架构师数据库1024程序员节
一、分布式数据库1.分片透明性分片透明性:分不分片,用户感受不到(不关心如何分片存储)。位置透明性:数据存放在哪里,用户不用管(用户无需知道数据存放的物理位置)复制透明性:不关心结点的复制情况。局部数据模型透明性(逻辑透明):用户或应用程序无需知道局部场地使用的是哪种数据模型。2.两阶段提交协议2PC2PC事务提交的两个阶段①表决阶段,目的是形成一个共同的决定②执行阶段,目的是实现这个协调者的决定
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 嵌入式软件工程师为什么要撰写博客?——开启技术进阶与职业发展的双重大门
Electron-er
软件需求嵌入式硬件架构单片机人工智能
目录一、技术沉淀:构建嵌入式知识复利系统知识沉淀的三层架构二、职业发展:量化个人技术品牌价值职业价值评估模型三、社区贡献:推动嵌入式技术生态演进知识传播的涟漪效应四、写作方法论:打造专业级技术博客内容开发五步法可视化增强技术五、数据验证:博客投资回报率分析六、实践指南:从入门到专家的路径规划博客运营路线图关键成功要素结语一、技术沉淀:构建嵌入式知识复利系统在嵌入式开发领域,寄存器操作、RTOS调度
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- React篇之three渲染
这个一个非常哈
react.js前端前端框架
需求:拖拽右侧面板,里面的three模型能够自适应import{useEffect,useState,useRef}from'react'import'./App.css'import*asTHREEfrom'three';import{GLTFLoader}from'three/addons/loaders/GLTFLoader.js';import{debounce}from'lodash';
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- DeepSeek R1 本地部署实战教程来了,带可视化界面,非常详细!
java
大家好,我是R哥。虽然DeepSeek官方提供了可视化聊天界面,但稳定性实在太差了,动不动就服务繁忙,根本没办法正常使用。另外,对于一些对数据隐私、实时性能要求较高的场景,本地部署也是不可避免的选择。那么,如何本地部署DeepSeekR1的模型?本篇,开干!相关阅读:DeepSeek-R1本地部署配置清单DeepSeek-R11.5b、7b、8b、14b、32b、70b、671b都是什么鬼?如何部
- python进程和线程之间通信_python进程和线程通信
weixin_39718890
python进程和线程之间通信
1,线程(Thread)使用多线程可以有效的利用CPU资源(Python例外)。然而多线程所带来的程序的复杂度也不可避免,尤其是对竞争资源的同步问题。然而在python中由于使用了全局解释锁(GIL)的原因,代码并不能同时在多核上并发的运行,也就是说,Python的多线程不能并发,使用多线程来改进自己的Python代码后,程序的运行效率却下降了。实际上使用多线程的编程模型是很困难的,程序员很容易犯
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- kotlin与MVVM的结合使用总结(三)
每次的天空
kotlin前端开发语言
在MVVM(Model-View-ViewModel)架构中,ViewModel(VM层)起到了连接视图(View)和数据模型(Model)的桥梁作用。它负责处理业务逻辑、管理数据状态,并将数据以一种可观察的方式提供给视图。以下将深入讲解在Kotlin中如何实现MVVM的VM层,并结合代码进行说明。创建ViewModel类ViewModel类负责处理业务逻辑和管理数据状态,并将数据以LiveDat
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- ddddocr识别图片中的汉字
雪小妮
python
ddddocr识别图片中的汉字importddddocrfromioimportBytesIOfromPILimportImageurl='图片地址'resp=requests.get(url)img=Image.open(BytesIO(resp.content))#初始化OCR模型#创建DdddOcr对象并初始化模型ocr=ddddocr.DdddOcr()#调用recognize函数进行图像
- LibreTranslate的本地部署与应用服务开发
一望无际的大草原
高级数据应用后端人工智能大模型翻译源码部署
最近在关注大模型预训练文章和应用服务开发,有时候需要借助翻译工具,使用起来都不太方便,就找了一下类似的常见语言的翻译方案,无意中看到一个开源翻译方案(即LibreTranslate),对于通用和计算机类内容的翻译效果还是不错的,因此就对开源翻译代码进行了本地部署和应用服务开发及测试。主要对源码的启动参数、api服务、认证服务和访问权限等内容进行了补充完善,并将依赖的翻译argos-translat
- Node.js Web 模块详解
froginwe11
开发语言
Node.jsWeb模块详解引言Node.js作为一款流行的JavaScript运行环境,以其高性能、事件驱动和非阻塞I/O模型而闻名。在Node.js中,模块是构建应用程序的基础,也是其强大的关键所在。本文将详细介绍Node.js的Web模块,包括其基本概念、常用模块及其应用。模块的概念在Node.js中,模块是一种组织代码的方式,它将代码分割成独立的、可复用的部分。模块不仅可以减少代码的冗余,
- 验证码识别:使用OCR技术识别图形验证码详解
数据知道
2025年爬虫和逆向教程ocrpython爬虫OCR识别验证码识别图片验证码
文章目录一、基本原理二、所需工具2.1Python环境2.2图像处理库2.3OCR引擎2.4Python接口三、实现步骤3.1获取验证码图像3.2图像预处理3.3使用OCR进行字符识别3.4基本OCR识别样例四、提高识别准确率的方法4.1字符分割4.2使用深度学习模型4.3数据增强4.4集成多个OCR引擎五、实际应用中的注意事项六、总结验证码(CAPTCHA)是一种用于区分人类用户和自动化程序的安
- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- ollama 指定安装路径 设置模型路径
波格斯特
语言模型
在Windows系统中,要自定义Ollama的安装路径,可以通过以下步骤实现:一、安装阶段指定路径手动创建目标目录在非系统盘(如D盘、E盘)创建安装目录,例如D:\ProgramFiles\Ollama或E:\MySoftware\Ollama。通过命令行安装将Ollama安装包(如OllamaSetup.exe)放入目标目录。在目标目录打开CMD窗口:按住Shift键右键点击空白处,选择“在此处
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- DeepSeek 与其他 AI 模型的对比:优势与特色分析
CarlowZJ
人工智能DeepSeek
一、引言在众多AI模型中,DeepSeek凭借其独特的功能和优势脱颖而出。本文将对比DeepSeek与其他流行的AI模型,分析它的优势与特色。二、与GPT系列的对比功能多样性:DeepSeek不仅支持文本生成,还支持代码生成和对话交互。多模态能力:DeepSeek支持多种输入和输出形式,如图像和语音。行业适配性:DeepSeek提供了针对不同行业的优化方案。三、与BERT系列的对比生成能力:Dee
- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,