- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- HarmonyOS免密认证方案 助力应用登录安全升级
HarmonyOS SDK
应用场景harmonyos安全华为
6月21日,2025年华为开发者大会"安全与隐私分论坛"在松山湖顺利举办。本论坛聚焦App治理与监管、星盾安全2.0的核心能力等进行深度分享与探讨。其中,HarmonyOSPasskey免密认证方案作为安全技术创新成果备受瞩目。该方案基于FIDO协议实现,支持用户在应用内、网页上乃至跨设备间实现无缝且安全的免密登录体验。火山引擎飞连作为伙伴代表,在现场分享了基于HarmonyOSPasskey免密
- 数据编织趋势探秘
今天跟大家聊聊数据编织(DataFabric)的概念Gartner在2022年重要战略技术趋势中重点提到数据编织(DataFabric)这个概念,本质上是在谈怎么实现“数据找人而不是人找数据”的愿景为什么DataFabric将会成为一种趋势,为什么越来越多的企业将在未来采用这样的方式进行部署?1、在传统IT时代,无论是早年的“数据仓库”还是近几年的“数据湖”和“大数据”时代,其实数据利用都是集中式
- Apache Gravitino 安装和配置指南
牧沛琚Immortal
ApacheGravitino安装和配置指南gravitino世界上最强大的数据目录服务,提供高性能、地理分布和联邦化的元数据湖。项目地址:https://gitcode.com/gh_mirrors/gra/gravitino1.项目基础介绍和主要的编程语言项目基础介绍ApacheGravitino是一个高性能、地理分布式和联邦化的元数据湖。它直接管理不同来源、类型和区域的元数据,并为用户提供统
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 使用Airbyte连接Shopify进行数据集成实践
2301_80727036
语言模型elasticsearchjenkins
在当今的数据驱动时代,数据集成平台如Airbyte变得尤为重要。它不仅可以让从API、数据库和文件到仓库或数据湖的ELT流程变得高效,还提供了丰富的连接器,支持各种数据源的集成。尽管Airbyte的Shopify连接器已经不再推荐使用,但它的使用方法仍然能为我们揭示一些重要的实践技巧。技术背景介绍Airbyte是一个开源的数据集成平台,专注于从各种数据源将数据提取、加载到目标数据仓库或者数据湖中。
- 火山引擎发布大模型生态广场MCP Servers,LAS MCP助力AI数据湖构建
资料来源:火山引擎-开发者社区近日,火山引擎发布大模型生态广场——MCPServers,借助字节跳动生态能力,通过“MCPMarket(工具广场)+火山方舟(大模型服务)+Trae(应用开发环境)”深度协同,实现工具调用、模型推理到应用部署的全链路开发闭环,助力开发者以“模块化组装”模式告别复杂手动开发流程。火山引擎大模型生态广场MCPServers的核心架构由三部分组成:1.MCPMarket(
- 湖仓一体实时数据采集与存储实践
danny-IT技术博客
企业级SQLServer深度实践springbootsparkCDCDATALAKE
文章目录湖仓一体实时数据采集与存储实践1.实时数仓演进:从传统数仓到湖仓一体1.1传统数仓的局限性:批处理延迟与数据孤岛1.2湖仓一体(Lakehouse)的核心价值1.3典型行业场景解析案例1:金融实时风控案例2:电商库存同步2.CDC实时数据捕获技术选型2.1主流CDC技术对比Debezium实战配置2.2数据捕获模式详解全量快照模式增量日志模式2.3异常处理策略断点续传实现数据一致性保障3.
- 如何使用AWS S3进行文档对象加载
weixin_43212959
aws云计算
技术背景介绍AmazonSimpleStorageService(AmazonS3)是AmazonWebServices(AWS)提供的对象存储服务,具备高扩展性和高可用性,常用于备份、存档及数据湖构建。在AI应用中,S3也成为存储和访问大数据集的重要组件。在这篇文章中,我们将探讨如何使用S3FileLoader从S3存储桶中加载文档对象。核心原理解析Python的Boto3库是与AWS服务交互的
- 【软考高级系统架构论文】论数据湖技术及其应用
_Richard_
软考高级系统架构论文系统架构
论文真题近年来,随着移动互联网、物联网、工业互联网等技术的不断发展,企业级应用面临的数据规模不断增大,数据类型异常复杂。针对这一问题,业界提出“数据湖(DataLake)”这一新型的企业数据管理技术。数据湖是一个存储企业各种原始数据的大型仓库,支持对任意规模的结构化、半结构化和非结构化数据进行集中式存储,数据按照原有结构进行存储,无须进行结构化处理;数据湖中的数据可供存取、处理、分析及传输,支撑大
- Doris 数据集成 Apache Paimon
猫猫姐
Dorisdoris
Doris数据集成ApachePaimon湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭
- [Data Pipeline] MinIO存储(数据湖) | 数据层 Bronze/Silver/Gold
lvy-
#DatePipeline.大数据数据库python
第三章:MinIO存储(数据湖)欢迎回来,数据探险家们!在第一章:MySQL数据库(源系统)中,我们看到了原始咖啡销售数据的起点。在第二章:Spark作业(数据处理)中,我们学习了Spark作业如何作为强大的工作者来清洗、转换和准备这些数据。现在,处理后的数据去往何处?Spark作业在后续步骤中从哪里获取数据?我们需要一个中心位置,一个为海量多样化数据设计的大型存储区域。这就引出了我们的第三个关键
- Hive集成Paimon
Edingbrugh.南空
数据湖hive大数据hivehadoop数据仓库
引言在大数据领域,数据存储与处理技术不断演进,各类数据管理工具层出不穷。ApacheHive作为经典的数据仓库工具,以其成熟的生态和强大的批处理能力,长期服务于海量数据的存储与分析;而ApachePaimon作为新兴的流式湖仓存储引擎,具备实时写入、高效查询和统一批流处理等特性,为数据管理带来了新的活力。将Hive与Paimon进行集成,能够充分融合两者优势,实现数据的高效存储、实时处理与灵活分析
- 数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
chat2tomorrow
SQL2API数据仓库低代码平台数据仓库架构sql2api大数据低代码数据湖
目录一、概念对比:结构化vs全类型数据二、技术架构对比1.数据仓库架构特点2.数据湖架构特点三、典型应用场景数据仓库适合:数据湖适合:四、数据湖仓一体:趋势还是折中?五、总结:如何选型?结语在大数据时代,“数据仓库”和“数据湖”常被同时提及,甚至被误认为是同一类技术方案。然而,二者在架构设计、数据处理方式、应用场景等方面存在显著差异。本文将从多个维度对比数据仓库与数据湖,帮助你厘清概念,选型不再困
- Doris数据集成 Apache Iceberg
猫猫姐
Dorisdorisiceberg
Doris数据集成ApacheIcebergApacheIceberg是一种开源、高性能、高可靠的数据湖表格式,可实现超大规模数据的分析与管理。它支持ApacheDoris在内的多种主流查询引擎,兼容HDFS以及各种对象云存储,具备ACID、Schema演进、高级过滤、隐藏分区和分区布局演进等特性,可确保高性能查询以及数据的可靠性及一致性,其时间旅行和版本回滚功能也为数据管理带来较高的灵活性。Ap
- 大数据、数据挖掘技术收集(Vivo互联网技术)
XiaoQiong.Zhang
数据挖掘大数据
Hudi在vivo湖仓一体的落地实践用户行为分析模型实践(四)——留存分析模型用户行为分析模型实践(三)——H5通用分析模型用户行为分析模型实践(二)——漏斗分析模型用户行为分析模型实践(一)——路径分析模型AB实验遇到用户不均匀怎么办?——vivo游戏中心业务实践经验分享HBaseCompaction原理与线上调优实践vivo游戏黑产反作弊实践Kafka实时数据即席查询应用与实践Hive和Spa
- why starrocks? 优化数据架构:省钱、高效、简单
big-data1
架构
在大数据处理中,企业常面临成本高、系统复杂、维护困难的挑战。通过存算分离、湖仓一体和架构简化,可以显著降低成本、提升效率、简化管理。以下从三个方面详细说明如何实现这些目标。1.降本增效:从硬件到人力全面优化(1)硬件成本:更低的存储和计算费用存算分离降低存储成本传统存算一体架构要求所有数据都存放在高性能SSD或NVMe磁盘上,以保证查询速度。但很多冷数据(如历史日志)访问频率低,却占用了昂贵的存储
- 2024年赣州旅游投资集团招聘考试笔试题库及答案
㏕追忆似水年华あ
旅游人工智能大数据
1.下列说法中,错误的是:D.广东省与广西壮族自治区因位于珠江东西两侧而得名解析:A正确:山东、山西以太行山为界(山东西侧为山西)。B正确:湖南、湖北以洞庭湖为界(湖南在湖之南,湖北在湖之北)。C正确:河南、河北以黄河为界(河南在河之南,河北在河之北)。D错误:广东("广南东路"简称)和广西("广南西路"简称)得名于宋代行政区划"广南路",非珠江位置(广西在珠江上游,广东在下游,但非东西对称)。2
- 从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
镜舟科技
金融湖仓一体镜舟数据库数据仓库StarRocks存算分离
作者:吴岐诗,杭银消费金融大数据应用开发工程师本文整理自杭银消费金融大数据应用开发工程师在StarRocksSummitAsia2024的分享引言:融合数据湖与数仓的创新之路在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金融作为一家持牌消费金融机构,虽以金融业务为核心,却始终保持着强烈的科技创新精神,发明专利的话屈居行业第二。面对业务高速发展带来的数据挑战,公司开始了一场围绕数据基础设施
- 数据库、数据仓库、数据中台、数据湖相关概念
行云流水行云流水
数据库数据库数据仓库
文章目录序言1数据库,数据仓库,数据中台,数据湖-概念对比释义1.1概念产生的时间顺序1.2在使用功能方面对比1.3在使用工具方面对比2数据仓库2.1数据仓库的发展阶段2.2数据仓库的设计2.3数据仓库常用工具,方法2.3.1分析型数据库和关系数据库区别2.3.2常用ETL工具2.3.3常用的任务调度工具介绍序言简单的回顾记录一下,数据库,数据仓库,数据中台,数据湖的概念。避免混淆了。1数据库,数
- Deep Lake 简介
DeepLake简介DeepLake是由Activeloop开发的一款开源深度学习数据湖(DeepLearningDataLake),专为人工智能时代设计,旨在解决深度学习项目中数据管理的复杂性与低效问题。核心特点特性说明多模态数据支持支持图像、视频、音频、文本、点云等多种数据类型,适用于各类AI场景。张量存储数据以张量格式存储,兼容主流深度学习框架(如PyTorch、TensorFlow)。数据
- java 高阶函数_高阶函数和Java的Lambda
李省逸
java高阶函数
2017年的第一天,我坐在独墅湖边,写下这篇文章。独墅湖.jpeg在数学和计算机科学中,高阶函数是至少满足下列一个条件的函数:接受一个或多个函数作为输入输出一个函数java世界迎来新的一等公民——函数java8引入了函数式编程。函数式编程重点在函数,函数变成了Java世界里的一等公民,函数和其他值一样,可以到处被定义,可以作为参数传入另一个函数,也可以作为函数的返回值,返回给调用者。利用这些特性,
- 博睿数据×华为, 共筑智慧金融新未来
博睿数据Bonree
运维
日前,第十三届华为全球智慧金融峰会HiFS2025(国内场)在东莞松山湖开幕。本届峰会以“智在必行,众绘数字金融新篇章”为主题,共同探讨核心转型,稳步从单点智能向多体智能跃升,不断深化AI价值场景落地,建设领先的AI平台。博睿数据作为华为金融行业核心合作伙伴出席峰会,共同发布“分布式新核心解决方案5.5“,博睿数据为该方案注入强大的智能可观测能力,这标志着双方在深化技术协同创新、推动金融机构从数字
- 熬之滴水穿石:JAVA的世界(9)
chilavert318
熬之滴水穿石Java多线程
21--线程在没用JAVA之前就搞过多线程编程很是繁琐,接触JAVA后发现在JAVA里写多线程是一件多么简单的事情。因为JAVA里内置了多线程的功能,所以创建线程就只需要像创建一个类那般的简单用new()方法就可以搞定。线程意味着你必须要有一个独立的执行空间,最为重要的一点是我们的线程任务,在独立的执行空间运行我们的任务代码。在JAVA里我们都是用继承Thread类来写线程的任务代码,该类有相应的
- 熬之滴水穿石:一切从windows编程开始(1)
chilavert318
熬之滴水穿石Windows编程中间件
1--陈年旧账07年的年初,当时我正忙于公司的内部项目。对于之前一直应于项目“外战”的我来说,对于内部项目实际驾驭起来很游刃有余,得心应手。所以那个时候我开始对于自己之前做过的项目进行回顾和反思,让我首先面对的确是就是一个陈年旧账的项目。我是2000年入公司的,入司后就是从事windows编程的工作。我从使用delphi的RAD工具进入windows程序设计的。当时公司的主打产品是呼叫中心,其实产
- Paimon(数据湖框架)概述
lzhlizihang
数据湖框架Paimon数据湖大数据hdfs
文章目录一、数据湖二、什么是Paimon三、Paimon中的数据存储格式四、Paimon的核心特性五、Paimon的大规模实时更新六、LSM数据结构的核心思想一、数据湖数据湖就是:一种能够满足海量存储和海量分析的系统架构方案(不是数据库,也不是技术架构,是一种概念、一种方案和思路)其中HDFS实现了海量数据存储,Spark、MR、Flink等实现了海量数据分析所以说,Hadoop生态本质上就是数据
- Apache Doris 2.1.10 版本正式发布
SelectDB技术团队
apache数据仓库doris
亲爱的社区小伙伴们,ApacheDoris2.1.10版本已正式发布。2.1.10版本对湖仓一体、半结构化数据类型、查询优化器、执行引擎、存储管理进行了若干改进优化。欢迎大家下载使用。官网下载:https://doris.apache.org/downloadGitHub下载:https://github.com/apache/doris/releases行为变更AuditLog中的SQLHash
- 揭秘大数据领域数据架构的关键技术
大数据洞察
大数据架构ai
揭秘大数据领域数据架构的关键技术关键词:大数据、数据架构、关键技术、数据仓库、数据湖摘要:本文深入探讨大数据领域数据架构的关键技术。从大数据背景出发,详细介绍数据架构的核心概念,剖析其核心算法原理与操作步骤,结合数学模型与公式加深理解。通过项目实战案例展示代码实现与解读,探讨实际应用场景。同时推荐相关工具、资源及论文著作,最后总结大数据数据架构的未来发展趋势与挑战,并解答常见问题,为读者全面揭秘大
- Python, Go, Rust 开发40年来转移支付资金去向溯源与查询APP
Geeker-2025
pythongolangrust
以下是一个基于**Python、Go、Rust**开发的“40年来转移支付资金去向溯源与查询系统”技术方案,结合多语言优势实现资金全流程追踪与效能分析:---###**一、系统架构设计**```mermaidgraphTDA[多源数据]-->B(Python数据湖引擎)B-->C{Rust核心计算层}C-->D[Go微服务集群]D-->E[前端可视化]F[区块链存证]-->CG[审计监管端]-->
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep